MAT598 - Additional Problem Set 01

Joseph Wells
Arizona State University

Fall 2015

Solutions will be posted as they are submitted to me.
1.
a. Let S be the surface given by the presentation. Since the a edges form a twisted pair, the surface contains a Möbius strip, and thus is nonorientable. By chasing vertices around the edges, we have that $V=1$. Since edges are identified in pairs, we have that $E=3$. Lastly, there is just 1 face, so $\chi(S)=V-E+F=-1$. By the classification of surfaces, we have that $S \cong 3 \mathbb{P}^{2}=\mathbb{P}^{2} \# \mathbb{P}^{2} \# \mathbb{P}^{2}$.

b. Let S be the surface given by the presentation. There are no twisted pairs of edges, so the surface does not contain a Möbius strip, and thus is orientable. By chasing vertices around the edges, we have that $V=2$. Since edges are identified in pairs, we have that $E=3$. Lastly, there is just 1 face, so $\chi(S)=V-E+F=0$. By the classification of surfaces, we have that $S \cong \mathbb{T}^{2}$.

c. Although we can determine the Euler characteristic from the information given, orientability is not obvious. So, we rewrite this presentation with a single relation (this is pictorially demonstrated below) as $\left\langle d, e, f \mid e e^{-1} d^{-1} d f f^{-1}\right\rangle$. From here it is clear that our presentation does not contain any twisted pairs of edges, so it is does not contain a Möbius strip, and thus is orientable. By chasing vertices around the edges, we have that $V=4$. Since edges are identified in pairs, we have that $E=3$. Lastly, there is just 1 face, so $\chi(S)=V-E+F=2$. By the classification of surfaces, we have that $S \cong S^{2}$.

d. Although we can determine the Euler characteristic from the information given, orientability is not obvious. So, we rewrite this presentation with a single relation (this is pictorially demonstrated below) as $\left\langle a, b, f, h, k, o \mid a b k o^{-1} h a b k^{-1} o^{-1} f^{-1} f h\right\rangle$. From here it is clear that, since the a edges form a twisted pair, the surface contains a Möbius strip, and thus is nonorientable. By chasing vertices around the edges, we have that $V=5$. Since edges are identified in pairs, we have that $E=6$. Lastly, there is just 1 face, so $\chi(S)=V-E+F=0$. By the classification of surfaces, we have that $S \cong \mathbb{P}^{2} \# \mathbb{P}^{2}$.

2. INCOMPLETE
3.
a. INCOMPLETE
b. INCOMPLETE
4. INCOMPLETE
5.

a. INCOMPLETE
b. INCOMPLETE
c. INCOMPLETE
d. INCOMPLETE
6.

a. INCOMPLETE
b. INCOMPLETE
c. INCOMPLETE
d. INCOMPLETE
7. INCOMPLETE

