MAT598 - Additional Problem Set 01

Joseph Wells Arizona State University

Spring 2017

Below I have included hints/thoughts for approaching the exercises. Specific completed solutions are student-submitted.

- 1. See page 28 in Lee's book for the definition. There are topological manifolds that cannot be endowed with a smooth structure (although such a fact is not intuitively obvious). The E_8 manifold is one example, although several others exist.
- **2.** Yes, as in the case dim M = 0.
- **3.** We can identy \mathbb{RP}^2 with the quotient space S^2/\sim , where $x \sim y$ if and only if $x = \pm y$.
- 4. Recall that every smooth atlas on M is contained in a unique maximal smooth atlas.

5.

- a. This should be a straightforward computation.
- **b.** This should be a straightforward computation.
- c. This should be a straightforward computation.
- **6.** This is a straightforward check of the \mathbb{R} -algebra axioms.
- 7. This sounds like a job for parititions of unity with compact support.

8.

- **a.** This is a straightforward check of \mathbb{R} -linearity.
- **b.** Proof. (\Rightarrow) Suppose F is a diffeomorphism. Since F^* is linear from part (a), it suffices to show that F^* is a bijection when restricted to $C^{\infty}(N)$. Let $f \in C^{\infty}(M)$, $g \in C^{\infty}(N)$, and define the map

$$G: C^{\infty}(M) \to C^{\infty}(N)$$
$$f \mapsto f \circ F^{-1}.$$

It is a straightforward computation to show that G is the inverse for $F^*|_{C^{\infty}(N)}$. Thus $F^*|_{C^{\infty}(N)}$.

- (\Leftarrow) Suppose $F^*(C^{\infty}(N)) \subseteq C^{\infty}(M)$. Let $x \in M$ and choose charts (U, φ) of M containing x, and charts (V, ψ) of N containing F(x) so that $F(U) \subset V$. Let $\pi_i : \mathbb{R}^{\dim N} \to \mathbb{R}$ be the canonical projection onto the i^{th} coordinate. We then have that $F^*(\pi_i \circ \psi) = \pi_i \circ \psi \circ F : M \to \mathbb{R}$ is smooth by our hypothesis. Since $\pi_i \circ \psi \circ F \circ \varphi^{-1}$ is smooth for each $i, \psi \circ F \circ \varphi^{-1}$ is smooth, whence F is smooth.
- **c.** Define $G : \mathbb{C}^{\infty}(M) \to C^{\infty}(N)$ be $G(f) = f \circ F^{-1}$. Show that $G = (F^*)^{-1}$ (when properly restricted). Conversely