MAT502 - Additional Problem Set 08

Joseph Wells Arizona State University

Spring 2017

1. Suppose that V is a finite-dimensional real vector space. Let \mathscr{A} denote the subspace of the k-fold abstract tensor product $V^* \otimes \cdots \otimes V^*$ spanned by all elements of the form $\omega^1 \otimes \cdots \otimes \omega^k$ where $\omega^i = \omega^j$ for some $i \neq j$. (Thus \mathscr{A} is the trivial subspace if k < 2.) Let $A^k(V^*)$ denote the quotient vector space $(V^* \otimes \cdots \otimes V^*)/\mathscr{A}$.

a. Show that there is a unique isomorphism $F: A^k(V^*) \to \Lambda^k(V^*)$ such that the following diagram commutes:

(here $\pi: V^* \otimes \cdots \otimes V^* \to A^k(V^*)$ is the projection).

- **b.** Define a wedge product on $\bigoplus_k A^k(V^*)$ by $\omega \wedge \eta = \pi(\tilde{\omega} \otimes \tilde{\eta})$, where $\tilde{\omega}$, $\tilde{\eta}$ are arbitrary tensors such that $\pi(\tilde{\omega}) = \omega$ and $\pi(\tilde{\eta}) = \eta$. Show that this wedge product is well defined, and that F takes this wedge product to the Alt convention wedge product on $\Lambda(V^*)$).
- 2. Prove that the diagram below commutes, and use it to give a quick proof that $\operatorname{curl} \circ \operatorname{grad} \equiv 0$ and $\operatorname{div} \circ \operatorname{curl} \equiv 0$ on \mathbb{R}^3

$$C^{\infty}(\mathbb{R}^{3}) \xrightarrow{\text{grad}} \mathfrak{X}(\mathbb{R}^{3}) \xrightarrow{\text{curl}} \mathfrak{X}(\mathbb{R}^{3}) \xrightarrow{\text{div}} C^{\infty}(\mathbb{R}^{3})$$

$$\downarrow^{\text{Id}} \qquad \qquad \downarrow^{\flat} \qquad \qquad \downarrow^{\beta} \qquad \qquad \downarrow^{\ast}$$

$$\Omega^{0}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{1}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{2}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{3}(\mathbb{R}^{3})$$

- **3.** [Spring 2015, Problem 7] Let M be a smooth compact oriented manifold with boundary ∂M .
 - **a.** Prove that there does not exist a smooth retraction $r: M \to \partial M$.
 - **b.** Let B be the closed unit ball in \mathbb{R}^n . Use part (a) to show that every smooth map $F: B \to B$ must have a fixed point.
- 4. [Fall 2015, Problem 8]
 - **a.** Let M be a compact oriented manifold without boundary. Prove that, for all $\omega \in \Omega^k(M)$ and $\eta \in \Omega^{n-k-1}(M)$,

$$\int_M d\omega \wedge \eta = (-1)^k \int_M \omega \wedge d\eta.$$

- **b.** Show that there is a smooth vector field on S^2 that vanishes at exactly one point.
- c. Show that there is a smooth one-form on S^2 that vanishes at exactly one point. [Hint: Use your answer to part (b) in conjunction with any Riemannian metric on S^2 .] Is it possible to find a smooth, exact one-form on S^2 that vanishes at exactly one point? Why or why not?