MAT502 - Additional Problem Set 07

Joseph Wells Arizona State University

Spring 2017

- 1. State the Tensor Characterization Lemma (as it relates to smooth vector fields).
- 2. Suppose (M,g) is a Riemannian manifold. A smooth curve $\gamma : (a,b) \to M$ is said to be **unit-speed** if $|\gamma'(t)|_g \equiv 1$. Prove that every smooth curve with nowhere-nonvanishing velocity has a unit-speed reparametrization.
- **3.** [Spring 2015, Problem 8] Let (M, g) be a smooth *n*-dimensional Riemannian manifold.
 - **a.** Let N be a smooth manifold and $F: N \to M$ be a smooth map. Prove that $h = F^*g$ is a smooth metric on N if and only if F is an immersion.
 - **b.** Part (a), together with a certain big theorem, implies that every smooth manifold admits a Riemannian metric. State(some version of) this big theorem.
 - **c.** Use the existence of smooth partitions of unity to give another proof that every manifold admits a Riemannian metric.
 - **d.** Prove that if n = 1, (M, g) is locally isometric to $(\mathbb{R}, g_{\text{euc}})$.