MAT502 - Additional Problem Set 06

Joseph Wells Arizona State University

Spring 2017

- 1. True or false? Every smooth covector field on \mathbb{R} is exact.
- 2. For any smooth manifold M, show that T^*M is a trivial vector bundle if and only if TM is trivial.
- **3.** Prove that if $\varphi : [c, d] \to [a, b]$ is a decreasing diffeomorphism, then

$$\int_{[c,d]} \varphi^* \omega = - \int_{[a,b]} \omega.$$

- **4.** [Spring 2015, Problem 5] Let M be a smooth manifold and $f \in C^{\infty}(M)$.
 - **a.** Give the definition of the differential df of f.
 - **b.** Suppose that M is connected. Prove that M is constant on M if and only if df = 0.
 - c. State and prove the "fundamental theorem" for line integrals. [This is the theorem which expresses the value of $\int_{\gamma} df$ for a smooth function f and a piecewise smooth path γ .]
- **5.** For a smooth real-valued function $f: M \to \mathbb{R}$, show that $p \in M$ is a critical point of f if and only if $df_p = 0$.
- 6. Let M be a smooth manifold without boundary. Prove that a smooth covector field $\omega \in \mathfrak{X}^*(M)$ is conservative if and only if, given two piecewise smooth curves $\gamma, \tilde{\gamma} : [a, b] \to M$ with $\gamma(a) = \tilde{\gamma}(a)$ and $\gamma(b) = \tilde{\gamma}(b)$, we have $\int_{\gamma} \omega = \int_{\tilde{\gamma}} \omega$.