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1. The algebra of octonions (also called Cayley numbers is the 8-dimensional real vector space O = H×H (where
H is the space of quaternions) with the following bilinear product

(p, q)(r, s) = (pr − sq∗, p∗s + rq), for p, q, r, s ∈ H.

Show that O is a noncommutative, nonassociative algebra over R, and prove that there exists a smooth global
frame on S7. [Hint: it might be helpful to prove that (PQ∗)Q = P (Q∗Q) for all P,Q ∈ O, where (p, q)∗ = (p∗,−q).

2. Show by finding a counterexample that Proposition 8.19 is false if we replace the assumption that F is a diffeo-
morphism by the weaker assumption that it is smooth and bijective.

3. For each of the following vector fields on the plane, compute its coordinate representation in polar coordinates on
the right half-plane {(x, y) : x > 0}.
a. X = x ∂

∂x + y ∂
∂y

b. Y = x ∂
∂y − y ∂

∂x

c. Z = (x2 + y2) ∂
∂x

4. For each of the following pairs of vector fields X,Y defined on R3, compute the Lie bracket [X,Y ].

a. X = y ∂
∂z − 2xy2 ∂

∂y ; Y = ∂
∂y

b. X = x ∂
∂y − y ∂

∂x ; Y = y ∂
∂z − z ∂

∂y

5. Prove the following properties of induced homomorphisms.

a. The homomorphism (IdG)∗ : Lie(G) → Lie(G) induced by the identity map of G is the identity map of
Lie(G).

b. If F1 : G→ H and F2 : H → K are Lie group homomorphisms, then

(F2 ◦ F1)∗ = (F2)∗ ◦ (F1)∗ : Lie(G)→ Lie(K).

c. Isomorphic Lie groups have isomorphic Lie algebras.

6. Verify that the kernel and image of a Lie algebra homomorphism are Lie subalgebras.

7. Let X,Y, Z ∈ X(M). Show that, for f, g ∈ C∞(M), the Lie bracket satisfies

[fX, gY ] = fg[X,Y ] + (fXg)Y − (gY f)X.

8. [Spring 2015] Let G be a Lie group which acts smoothly on the smooth manifolds M and N .

a. Suppose that Φ : M → N is a smooth map that is equivariant relative to the actions on M and N . Suppose
further that the action of G on M is transitive. Prove that Φ has constant rank.

b. Use part (a) to prove that O(n) is a smooth n(n− 1)/2-dimensional Lie subgroup of GL(n,R). Describe the
tangent space TIO(n) ⊂M(n,R).

c. Prove that O(n) is compact
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