MAT502 - Additional Problem Set 05

Joseph Wells Arizona State University

Spring 2017

1. The algebra of *octonions* (also called *Cayley numbers* is the 8-dimensional real vector space $\mathbb{O} = \mathbb{H} \times \mathbb{H}$ (where \mathbb{H} is the space of quaternions) with the following bilinear product

$$(p,q)(r,s) = (pr - sq^*, p^*s + rq), \text{ for } p, q, r, s \in \mathbb{H}.$$

Show that \mathbb{O} is a noncommutative, nonassociative algebra over \mathbb{R} , and prove that there exists a smooth global frame on S^7 . [Hint: it might be helpful to prove that $(PQ^*)Q = P(Q^*Q)$ for all $P, Q \in \mathbb{O}$, where $(p,q)^* = (p^*, -q)$.

- 2. Show by finding a counterexample that Proposition 8.19 is false if we replace the assumption that F is a diffeomorphism by the weaker assumption that it is smooth and bijective.
- **3.** For each of the following vector fields on the plane, compute its coordinate representation in polar coordinates on the right half-plane $\{(x, y) : x > 0\}$.
 - **a.** $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ **b.** $Y = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$ **c.** $Z = (x^2 + y^2) \frac{\partial}{\partial x}$

4. For each of the following pairs of vector fields X, Y defined on \mathbb{R}^3 , compute the Lie bracket [X, Y].

a.
$$X = y \frac{\partial}{\partial z} - 2xy^2 \frac{\partial}{\partial y}; Y = \frac{\partial}{\partial y}$$

b. $X = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}; Y = y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y}$

5. Prove the following properties of induced homomorphisms.

- **a.** The homomorphism $(\mathrm{Id}_G)_* : \mathrm{Lie}(G) \to \mathrm{Lie}(G)$ induced by the identity map of G is the identity map of $\mathrm{Lie}(G)$.
- **b.** If $F_1: G \to H$ and $F_2: H \to K$ are Lie group homomorphisms, then

$$(F_2 \circ F_1)_* = (F_2)_* \circ (F_1)_* : \operatorname{Lie}(G) \to \operatorname{Lie}(K).$$

c. Isomorphic Lie groups have isomorphic Lie algebras.

- 6. Verify that the kernel and image of a Lie algebra homomorphism are Lie subalgebras.
- **7.** Let $X, Y, Z \in \mathfrak{X}(M)$. Show that, for $f, g \in C^{\infty}(M)$, the Lie bracket satisfies

$$[fX,gY] = fg[X,Y] + (fXg)Y - (gYf)X.$$

8. [Spring 2015] Let G be a Lie group which acts smoothly on the smooth manifolds M and N.

- **a.** Suppose that $\Phi: M \to N$ is a smooth map that is equivariant relative to the actions on M and N. Suppose further that the action of G on M is transitive. Prove that Φ has constant rank.
- **b.** Use part (a) to prove that O(n) is a smooth n(n-1)/2-dimensional Lie subgroup of $GL(n,\mathbb{R})$. Describe the tangent space $T_IO(n) \subset M(n,\mathbb{R})$.
- **c.** Prove that O(n) is compact