MAT502 - Additional Problem Set 04

Joseph Wells
Arizona State University

Spring 2017

1. Our definition of Lie groups includes the requirement that both the multiplication map and the inversion map are smooth. Show that the smoothness of the inversion map is redundant: if G is a smooth manifold with a group structure such that the multiplication map $m: G \times G \rightarrow G$ is smooth, then G is a Lie group. [Hint: show that the map $F: G \times G \rightarrow G \times G$ defined by $F(g, h)=(g, g h)$ is a bijective local diffeomorphism.]
2. Determine which of the following Lie groups are compact:

$$
\operatorname{GL}(n, \mathbb{R}), \operatorname{SL}(n, \mathbb{R}), \operatorname{GL}(n, \mathbb{C}), \operatorname{SL}(n, \mathbb{C}), U(n), S U(n)
$$

3. If G is a Lie group and $F: G \rightarrow H$ is a Lie group, then its universal cover \tilde{G} admits a Lie group structure. What other important detail can you add to this statement?
4. True or False? If G is a Lie group and $F: G \rightarrow H$ is a Lie group homomorphism, then $F(G)$ is an embedded Lie subgroup of H.
5. True or False? If $X \in \mathfrak{X}(M)$ satisfies $X(f)=0$ for all $f \in C^{\infty}(M)$, then $X \equiv 0$.
6. If X is a smooth nontrivial vector field, is $X X$ (i.e. $X \circ X$) ever a smooth vector field?
7. Suppose that M and N are smooth manifolds, $F: M \rightarrow N$ is a diffeomorphisms, and $X, Y \in \mathfrak{X}(M)$. Prove that $F_{*}[X, Y]=\left[F_{*} X, F_{*} Y\right]$. (Here $F_{*}: \mathfrak{X}(M) \rightarrow \mathfrak{X}(N)$ is the push-forward of vector-fields induced by F.)
8. Suppose $F: G \rightarrow H$ is a Lie group homomorphism and $X \in \operatorname{Lie}(G)$.
a. Define $F_{*} X$. Does your definition require that F is actually an isomorphism?
b. Prove that any $X \in \operatorname{Lie}(G)$ is complete.
c. Show that $\mathrm{O}(n)$ is compact.
9. Let G and H be Lie groups and $F: G \rightarrow H$ a Lie group homomorphism.
(a) Prove that F has constant rank.
(b) Explain why part (a) implies that $\operatorname{ker}(F)$ is an embedded Lie subgroup of G.
10. Give an example of two non-isomorphic Lie groups with isomorphic Lie algebras.
11. Let $S=\left\{A \in M_{2}(\mathbb{R}): \operatorname{rank}(A)=1\right\}$, where $M_{2}(\mathbb{R})$ is the set of 2×2 matrices with real entries.
(a) Prove that S is a 3 -dimensional embedded submanifold of $M_{2}(\mathbb{R})$.
(b) Consider the following matrix in S :

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)
$$

What is the tangent space $T_{A} S$ when regarded as a subspace of $M_{2}(\mathbb{R})$ via the identification $T_{A} M_{2}(\mathbb{R}) \cong$ $M_{2}(\mathbb{R})$?

