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1. Our definition of Lie groups includes the requirement that both the multiplication map and the inversion map are
smooth. Show that the smoothness of the inversion map is redundant: if G is a smooth manifold with a group
structure such that the multiplication map m : G × G → G is smooth, then G is a Lie group. [Hint: show that
the map F : G×G→ G×G defined by F (g, h) = (g, gh) is a bijective local diffeomorphism.]

2. Determine which of the following Lie groups are compact:

GL(n,R), SL(n,R), GL(n,C), SL(n,C), U(n), SU(n).

3. If G is a Lie group and F : G→ H is a Lie group, then its universal cover G̃ admits a Lie group structure. What
other important detail can you add to this statement?

4. True or False? If G is a Lie group and F : G→ H is a Lie group homomorphism, then F (G) is an embedded Lie
subgroup of H.

5. True or False? If X ∈ X(M) satisfies X(f) = 0 for all f ∈ C∞(M), then X ≡ 0.

6. If X is a smooth nontrivial vector field, is XX (i.e. X ◦X) ever a smooth vector field?

7. Suppose that M and N are smooth manifolds, F : M → N is a diffeomorphisms, and X,Y ∈ X(M). Prove that
F∗[X,Y ] = [F∗X,F∗Y ]. (Here F∗ : X(M)→ X(N) is the push-forward of vector-fields induced by F .)

8. Suppose F : G→ H is a Lie group homomorphism and X ∈ Lie(G).

a. Define F∗X. Does your definition require that F is actually an isomorphism?

b. Prove that any X ∈ Lie(G) is complete.

c. Show that O(n) is compact.

9. Let G and H be Lie groups and F : G→ H a Lie group homomorphism.

(a) Prove that F has constant rank.

(b) Explain why part (a) implies that ker(F ) is an embedded Lie subgroup of G.

10. Give an example of two non-isomorphic Lie groups with isomorphic Lie algebras.

11. Let S = {A ∈M2(R) : rank(A) = 1}, where M2(R) is the set of 2× 2 matrices with real entries.

(a) Prove that S is a 3-dimensional embedded submanifold of M2(R).

(b) Consider the following matrix in S:

A =

(
1 0
1 0

)
.

What is the tangent space TAS when regarded as a subspace of M2(R) via the identification TAM2(R) ∼=
M2(R)?
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