MAT502 - Additional Problem Set 04

Joseph Wells Arizona State University

Spring 2017

- 1. Our definition of Lie groups includes the requirement that both the multiplication map and the inversion map are smooth. Show that the smoothness of the inversion map is redundant: if G is a smooth manifold with a group structure such that the multiplication map $m: G \times G \to G$ is smooth, then G is a Lie group. [Hint: show that the map $F: G \times G \to G \times G$ defined by F(g, h) = (g, gh) is a bijective local diffeomorphism.]
- 2. Determine which of the following Lie groups are compact:

 $\operatorname{GL}(n,\mathbb{R}), \ \operatorname{SL}(n,\mathbb{R}), \ \operatorname{GL}(n,\mathbb{C}), \ \operatorname{SL}(n,\mathbb{C}), \ U(n), \ SU(n).$

- **3.** If G is a Lie group and $F: G \to H$ is a Lie group, then its universal cover \tilde{G} admits a Lie group structure. What other important detail can you add to this statement?
- 4. True or False? If G is a Lie group and $F: G \to H$ is a Lie group homomorphism, then F(G) is an embedded Lie subgroup of H.
- **5.** True or False? If $X \in \mathfrak{X}(M)$ satisfies X(f) = 0 for all $f \in C^{\infty}(M)$, then $X \equiv 0$.
- **6.** If X is a smooth nontrivial vector field, is XX (i.e. $X \circ X$) ever a smooth vector field?
- 7. Suppose that M and N are smooth manifolds, $F: M \to N$ is a diffeomorphisms, and $X, Y \in \mathfrak{X}(M)$. Prove that $F_*[X,Y] = [F_*X,F_*Y]$. (Here $F_*:\mathfrak{X}(M) \to \mathfrak{X}(N)$ is the push-forward of vector-fields induced by F.)
- 8. Suppose $F: G \to H$ is a Lie group homomorphism and $X \in \text{Lie}(G)$.
 - **a.** Define F_*X . Does your definition require that F is actually an isomorphism?
 - **b.** Prove that any $X \in \text{Lie}(G)$ is complete.
 - **c.** Show that O(n) is compact.
- **9.** Let G and H be Lie groups and $F: G \to H$ a Lie group homomorphism.
 - (a) Prove that F has constant rank.
 - (b) Explain why part (a) implies that $\ker(F)$ is an embedded Lie subgroup of G.
- **10.** Give an example of two non-isomorphic Lie groups with isomorphic Lie algebras.

11. Let $S = \{A \in M_2(\mathbb{R}) : \operatorname{rank}(A) = 1\}$, where $M_2(\mathbb{R})$ is the set of 2×2 matrices with real entries.

- (a) Prove that S is a 3-dimensional embedded submanifold of $M_2(\mathbb{R})$.
- (b) Consider the following matrix in S:

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

What is the tangent space $T_A S$ when regarded as a subspace of $M_2(\mathbb{R})$ via the identification $T_A M_2(\mathbb{R}) \cong M_2(\mathbb{R})$?