MAT502 - Additional Problem Set 03

Joseph Wells Arizona State University

Spring 2017

1. Suppose $M \subseteq \mathbb{R}^n$ is an embedded *m*-dimensional submanifold, and let $UM \subseteq T\mathbb{R}^n$ be the set of all unit tangent vectors to M:

$$UM = \{ (x, v) \in T\mathbb{R}^n : x \in M, v \in T_xM, |v| = 1 \}.$$

It is called the *unit tangent bundle of* M. Prove that UM is an embedded (2m-1)-dimensional submanifold of $T\mathbb{R}^n \cong \mathbb{R}^n \times \mathbb{R}^n$.

2. For each $a \in \mathbb{R}$, let M_a be the subset of \mathbb{R}^2 defined by

$$M_a = \{(x, y) : y^2 = x(x - 1)(x - a)\}.$$

For which values of a is M_a and embedded submanifold of \mathbb{R}^2 ? For which values can M_a be given a topology and a smooth structure making it into an immersed submanifold?

3. Show by example that an immersed submanifold $S \subseteq M$ might have more than one topology and smooth structure with respect to which it is an immersed submanifold.