MAT502 - Additional Problem Set 03

Joseph Wells
Arizona State University

Spring 2017

1. Suppose $M \subseteq \mathbb{R}^{n}$ is an embedded m-dimensional submanifold, and let $U M \subseteq T \mathbb{R}^{n}$ be the set of all unit tangent vectors to M :

$$
U M=\left\{(x, v) \in T \mathbb{R}^{n}: x \in M, v \in T_{x} M,|v|=1\right\} .
$$

It is called the unit tangent bundle of \boldsymbol{M}. Prove that $U M$ is an embedded ($2 m-1$)-dimensional submanifold of $T \mathbb{R}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}$.
2. For each $a \in \mathbb{R}$, let M_{a} be the subset of \mathbb{R}^{2} defined by

$$
M_{a}=\left\{(x, y): y^{2}=x(x-1)(x-a)\right\}
$$

For which values of a is M_{a} and embedded submanifold of \mathbb{R}^{2} ? For which values can M_{a} be given a topology and a smooth structure making it into an immersed submanifold?
3. Show by example that an immersed submanifold $S \subseteq M$ might have more than one topology and smooth structure with respect to which it is an immersed submanifold.

