MAT502 - Additional Problem Set 02

Joseph Wells Arizona State University

Spring 2017

- **1.** Suppose M is a smooth manifold with or without boundary, $p \in M$, $v \in T_pM$, and $f, g \in C^{\infty}(M)$. Prove the following:
 - **a.** If f is a constant function, then vf = 0.
 - **b.** If f(p) = g(p) = 0, then v(fg) = 0.
- 2. Let (x, y) denote the standard coordinates on \mathbb{R}^2 . Verify that (\tilde{x}, \tilde{y}) are global smooth coordinates on \mathbb{R}^2 , where

 $\tilde{x} = x, \qquad \tilde{y} = y + x^3.$

Let p be the point $(1,0) \in \mathbb{R}^2$ (in standard coordinates), and show that

$$\left. \frac{\partial}{\partial x} \right|_p \neq \left. \frac{\partial}{\partial \tilde{x}} \right|_p,$$

even thought the coordinate functions $x = \tilde{x}$ are identically equal.

3. Let M_1, \ldots, M_k be smooth manifolds, and for each j, let $\pi_j : M_1 \times \cdots M_k \to M_j$ be the projection onto the M_j factor. Prove that, for any point $p = (p_1, \ldots, p_k) \in M_1 \times \cdots M_k$, the map

$$\alpha: T_p(M_1 \times \cdots \times M_k) \to T_{p_1}M_1 \oplus \cdots \oplus T_{p_k}M_k$$

defined by

$$\alpha(v) = (d(\pi_1)_p(v), \dots, d(\pi_k)_p(v))$$

is an isomorphism. Prove that the same is true if one of the spaces M_i is a smooth manifold with boundary.

- 4. Let M be a smooth manifold with or without boundary and let p be a point of M. Let $C_p^{\infty}(M)$ denote the algebra of germs of smooth real-valued functions at p, and let $\mathscr{D}_p M$ denote the vector space of derivations of $C_p^{\infty}(M)$. Define a map $\Phi : \mathscr{D}_p M \to T_p M$ by $(\Phi v)f = v([f]_p)$. Show that Φ is an isomorphism.
- 5. True or false? A smooth bijective map of constant rank is a diffeomorphism.
- **6.** Give an example of a non-trivial constant rank map $\varphi : \mathbb{RP}^2 \to \mathbb{RP}^2$.
- 7. Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion $F: M \to \mathbb{R}^k$ for any k > 0.
- 8. Let $\pi : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ be the usual projectivization map and let $q = \pi|_{\mathbb{S}^n} : \mathbb{S}^n \to \mathbb{RP}^n$. Show that q is a smooth covering map.