MAT502 - Additional Problem Set 01

Joseph Wells
Arizona State University

Spring 2017

1. What is a smooth structure on a topological manifold? Do all topological manifolds admit smooth structures?
2. Is a smooth structure on a smooth manifold ever unique?
3. Show that $\mathbb{R P}^{n}$ is compact.
4. Let M be a topological manifold. Prove that two smooth atlases for M determine the same smooth structure if and only if their union is a smooth atlas.
5. Let N denote the north pole $(0, \ldots, 0,1) \in \mathbb{S}^{n} \subseteq \mathbb{R}^{n+1}$, and let S denote the south pole $(0, \ldots, 0,-1)$. Define the stereographic projection $\sigma: \mathbb{S}^{n} \backslash\{N\} \rightarrow \mathbb{R}^{n}$ by

$$
\sigma\left(x^{1}, \ldots, x^{n+1}\right)=\frac{\left(x^{1}, \ldots, x^{n}\right)}{1-x^{n+1}}
$$

Let $\tilde{\sigma}(x)=-\sigma(-x)$ for $x \in \mathbb{S}^{n} \backslash\{S\}$.
a. For any $x \in \mathbb{S}^{n} \backslash\{N\}$, show that $\sigma(x)=u$, where $(u, 0)$ is the point where the line through N and x intersects the linear subspace where $x^{n+1}=0$. Similarly, show that $\tilde{\sigma}(x)$ is the point where the line through S and x intersects the same subspace. (For this reason, $\tilde{\sigma}$ is called the stereographic projection from the south pole.)
b. Show that σ is bijective, and

$$
\sigma^{-1}\left(u^{1}, \ldots, u^{n}\right)=\frac{\left(2 u^{1}, \ldots, 2 u^{n},|u|^{2}-1\right)}{|u|^{2}+1}
$$

c. Compute the transition map $\tilde{\sigma} \circ \sigma^{-1}$ and verify that the atlas consisting of the two charts $\left(\mathbb{S}^{n} \backslash\{N\}, \sigma\right)$ and $\left(\mathbb{S}^{n} \backslash\{S\}, \tilde{\sigma}\right)$ defines a smooth structure on \mathbb{S}^{n}. (The coordinates are defined by σ or $\tilde{\sigma}$ are called the stereographic coordinates.)
6. Let M be a smooth manifold with or without boundary. Show that pointwise multiplication turns $C^{\infty}(M)$ into a commutative ring and a commutative associate \mathbb{R}-algebra.
7. Suppose that M is a smooth manifold. Prove that M admits a smooth proper function $f: M \rightarrow \mathbb{R}$.
8. For any topological space M, let $C(M)$ denote the algebra of continuous functions $f: M \rightarrow \mathbb{R}$. Given a continuous $\operatorname{map} F: M \rightarrow N$, define $F^{*}: C(N) \rightarrow C(M)$ by $F^{*}(f)=f \circ F$.
a. Show that F^{*} is a linear map.
b. Suppose M and N are smooth manifolds. Show that $F: M \rightarrow N$ is smooth if and only if $F^{*}\left(C^{\infty}(N)\right) \subseteq$ $C^{\infty}(M)$.
c. Suppose $F: M \rightarrow N$ is a homeomorphism between smooth manifolds. Show that it is a diffeomorphism if and only if F^{*} restricts to an isomorphism from $C^{\infty}(N)$ to $C^{\infty}(M)$.

