MAT502 - Additional Problem Set 01

Joseph Wells Arizona State University

Spring 2017

- 1. What is a smooth structure on a topological manifold? Do all topological manifolds admit smooth structures?
- 2. Is a smooth structure on a smooth manifold ever unique?
- **3.** Show that \mathbb{RP}^n is compact.
- 4. Let M be a topological manifold. Prove that two smooth atlases for M determine the same smooth structure if and only if their union is a smooth atlas.
- 5. Let N denote the north pole $(0, \ldots, 0, 1) \in \mathbb{S}^n \subseteq \mathbb{R}^{n+1}$, and let S denote the south pole $(0, \ldots, 0, -1)$. Define the stereographic projection $\sigma : \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$ by

$$\sigma(x^1, \dots, x^{n+1}) = \frac{(x^1, \dots, x^n)}{1 - x^{n+1}}.$$

Let $\tilde{\sigma}(x) = -\sigma(-x)$ for $x \in \mathbb{S}^n \setminus \{S\}$.

- **a.** For any $x \in \mathbb{S}^n \setminus \{N\}$, show that $\sigma(x) = u$, where (u, 0) is the point where the line through N and x intersects the linear subspace where $x^{n+1} = 0$. Similarly, show that $\tilde{\sigma}(x)$ is the point where the line through S and x intersects the same subspace. (For this reason, $\tilde{\sigma}$ is called the *stereographic projection from the south pole*.)
- **b.** Show that σ is bijective, and

$$\sigma^{-1}(u^1, \dots, u^n) = \frac{(2u^1, \dots, 2u^n, |u|^2 - 1)}{|u|^2 + 1}$$

- c. Compute the transition map $\tilde{\sigma} \circ \sigma^{-1}$ and verify that the atlas consisting of the two charts $(\mathbb{S}^n \setminus \{N\}, \sigma)$ and $(\mathbb{S}^n \setminus \{S\}, \tilde{\sigma})$ defines a smooth structure on \mathbb{S}^n . (The coordinates are defined by σ or $\tilde{\sigma}$ are called the *stereographic coordinates*.)
- 6. Let M be a smooth manifold with or without boundary. Show that pointwise multiplication turns $C^{\infty}(M)$ into a commutative ring and a commutative associate \mathbb{R} -algebra.
- 7. Suppose that M is a smooth manifold. Prove that M admits a smooth proper function $f: M \to \mathbb{R}$.
- 8. For any topological space M, let C(M) denote the algebra of continuous functions $f: M \to \mathbb{R}$. Given a continuous map $F: M \to N$, define $F^*: C(N) \to C(M)$ by $F^*(f) = f \circ F$.
 - **a.** Show that F^* is a linear map.
 - **b.** Suppose M and N are smooth manifolds. Show that $F: M \to N$ is smooth if and only if $F^*(C^{\infty}(N)) \subseteq C^{\infty}(M)$.
 - c. Suppose $F: M \to N$ is a homeomorphism between smooth manifolds. Show that it is a diffeomorphism if and only if F^* restricts to an isomorphism from $C^{\infty}(N)$ to $C^{\infty}(M)$.