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6. INCOMPLETE Let ϕ : π1(X ×Y )→ π1(X)×π1(Y ) be given by ϕ : [f ] 7→ (p1∗[f ], p2∗[f ]), where p1 : X ×Y → X
and p2 : X × Y → Y are canonical projections. We note that the induced homomorphisms π1∗ and π2∗ are
well-defined, and so ϕ is as well. It follows as well that ϕ is a homomorphism.

Let g1 be a loop in X and g2 a loop in Y . Define a loop f in X × Y by f(t) = (g(t), h(t)). We then have that
g1(t) = p1(f(t)) and g2(t) = p2(f(t)). As such, we now have that ϕ([f ]) = ([g1], [g2]) and thus ϕ is surjective.

Finally, let c1, c2 be constant loops in X and Y , respectively, and suppose, for [f ] ∈ π1(X × Y ), we have that
ϕ([f ]) = ([c1], [c2]). Then we must have p1∗[f ] = [p1(f)] = [c1] and p2∗[f ] = [p2(f)] = [c2], so [f ] = [(c1, c2)] and
hence f is homotopic to the constant loop in π1(X × Y ). Thus, kerϕ is trivial. By the first isomorphism theorem
for groups, we have

π1(X × Y ) ≡ π1(X × Y )/ kerϕ ≡ Imϕ = π1(X)× π1(Y ).
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