MAT598 - Additional Problem Set 02

Joseph Wells
Arizona State University

Fall 2015

Solutions will be posted as they are submitted to me.

1. INCOMPLETE
2.

a. INCOMPLETE
b. INCOMPLETE
c. INCOMPLETE
3. INCOMPLETE
4. INCOMPLETE
5. INCOMPLETE
6. INCOMPLETE Let $\varphi: \pi_{1}(X \times Y) \rightarrow \pi_{1}(X) \times \pi_{1}(Y)$ be given by $\varphi:[f] \mapsto\left(p_{1 *}[f], p_{2 *}[f]\right)$, where $p_{1}: X \times Y \rightarrow X$ and $p_{2}: X \times Y \rightarrow Y$ are canonical projections. We note that the induced homomorphisms $\pi_{1 *}$ and $\pi_{2 *}$ are well-defined, and so φ is as well. It follows as well that φ is a homomorphism.
Let g_{1} be a loop in X and g_{2} a loop in Y. Define a loop f in $X \times Y$ by $f(t)=(g(t), h(t))$. We then have that $g_{1}(t)=p_{1}(f(t))$ and $g_{2}(t)=p_{2}(f(t))$. As such, we now have that $\varphi([f])=\left(\left[g_{1}\right],\left[g_{2}\right]\right)$ and thus φ is surjective.
Finally, let c_{1}, c_{2} be constant loops in X and Y, respectively, and suppose, for $[f] \in \pi_{1}(X \times Y)$, we have that $\varphi([f])=\left(\left[c_{1}\right],\left[c_{2}\right]\right)$. Then we must have $p_{1 *}[f]=\left[p_{1}(f)\right]=\left[c_{1}\right]$ and $p_{2 *}[f]=\left[p_{2}(f)\right]=\left[c_{2}\right]$, so $[f]=\left[\left(c_{1}, c_{2}\right)\right]$ and hence f is homotopic to the constant loop in $\pi_{1}(X \times Y)$. Thus, $\operatorname{ker} \varphi$ is trivial. By the first isomorphism theorem for groups, we have

$$
\pi_{1}(X \times Y) \equiv \pi_{1}(X \times Y) / \operatorname{ker} \varphi \equiv \operatorname{Im} \varphi=\pi_{1}(X) \times \pi_{1}(Y)
$$

