MAT598 - Additional Problem Set 01

Joseph Wells
Arizona State University

Fall 2016

Solutions will be posted as they are submitted to me.
1.
a. Let S be the surface given by the presentation. Since the a edges form a twisted pair, the surface contains a Möbius strip, and thus is nonorientable. By chasing vertices around the edges, we have that $V=1$. Since edges are identified in pairs, we have that $E=3$. Lastly, there is just 1 face, so $\chi(S)=V-E+F=-1$. By the classification of surfaces, we have that $S \cong 3 \mathbb{P}^{2}=\mathbb{P}^{2} \# \mathbb{P}^{2} \# \mathbb{P}^{2}$.

b. Let S be the surface given by the presentation. There are no twisted pairs of edges, so the surface does not contain a Möbius strip, and thus is orientable. By chasing vertices around the edges, we have that $V=2$. Since edges are identified in pairs, we have that $E=3$. Lastly, there is just 1 face, so $\chi(S)=V-E+F=0$. By the classification of surfaces, we have that $S \cong \mathbb{T}^{2}$.

c. Although we can determine the Euler characteristic from the information given, orientability is not obvious. So, we rewrite this presentation with a single relation (this is pictorially demonstrated below) as $\left\langle d, e, f \mid e e^{-1} d^{-1} d f f^{-1}\right\rangle$. From here it is clear that our presentation does not contain any twisted pairs of edges, so it is does not contain a Möbius strip, and thus is orientable. By chasing vertices around the edges, we have that $V=4$. Since edges are identified in pairs, we have that $E=3$. Lastly, there is just 1 face, so $\chi(S)=V-E+F=2$. By the classification of surfaces, we have that $S \cong S^{2}$.

d. Although we can determine the Euler characteristic from the information given, orientability is not obvious. So, we rewrite this presentation with a single relation (this is pictorially demonstrated below) as $\left\langle a, b, f, h, k, o \mid a b k o^{-1} h a b k^{-1} o^{-1} f^{-1} f h\right\rangle$. From here it is clear that, since the a edges form a twisted pair, the surface contains a Möbius strip, and thus is nonorientable. By chasing vertices around the edges, we have that $V=5$. Since edges are identified in pairs, we have that $E=6$. Lastly, there is just 1 face, so $\chi(S)=V-E+F=0$. By the classification of surfaces, we have that $S \cong \mathbb{P}^{2} \# \mathbb{P}^{2}$.

2. Let V be the number of vertices, E the number of edges, and F the number of faces for our surface. Since there are m-many edges at each vertex, and there are 2 vertices on each edge, we have

$$
2 E=m V \quad \Rightarrow \quad V=\frac{2 E}{m}
$$

Similarly, since there are n-many edges around each face, and there are 2 faces attached to each edge, we have

$$
2 E=n F \quad \Rightarrow \quad F=\frac{2 E}{n} .
$$

Since we're assuming the Euler characteristic is 2, we get

$$
\begin{aligned}
V-E+F & =2 \\
\frac{2 E}{m}-E+\frac{2 E}{n} & =2 \\
E\left(\frac{1}{m}-\frac{1}{2}+\frac{1}{n}\right) & =2
\end{aligned}
$$

As $E>0$ and $n \geq 3$, we then have that

$$
\begin{aligned}
\frac{1}{m}-\frac{1}{2}+\frac{1}{n} & >0 \\
\frac{1}{m} & >\frac{1}{2}-\frac{1}{n} \geq \frac{1}{2}-\frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

so $3 \leq m<6$. We can consider each possible case for m. When $m=3, n=3,4,5$ are all possibilities. When $m=4, n=3$ is the only possibility. When $m=5, n=3$ is again the only possibility. Thus there are exactly five possibilities for Platonic solids.
3.
a. In order to be a surface, edges must be identified in pairs, so the number of edges $E=4$. As well, the octagon provides a single face, hence the number of faces $F=1$. Lastly, there must be at least one vertex, so the number of vertices $V \geq 1$. We thus have that

$$
\chi(S)=V-E+F \geq 1-4+1=-2
$$

b. INCOMPLETE

4. INCOMPLETE

5.

a. Yes, this is a manifold as the edges are identified in pairs.
b. No. This is nonorientable as it contains a twisted pair of edges and hence an embedded Möbius band.
c. $\chi(S)=V-E+F=2-5+1=-2$
d. By the classification of surfaces, a nonorientable surface is a connect sum of $2-\chi(S)$ copies of \mathbb{P}^{2}, i.e., $S \cong \mathbb{P}^{2} \# \mathbb{P}^{2} \# \mathbb{P}^{2} \# \mathbb{P}^{2}$.
6.

a. Yes, this is a manifold as the edges are identified in pairs.
b. No. This is nonorientable as it contains a twisted pair of edges and hence an embedded Möbius band.
c. $\chi(S)=V-E+F=2-5+1=-2$
d. By the classification of surfaces, a nonorientable surface is a connect sum of $2-\chi(S)$ copies of \mathbb{P}^{2}, i.e., $S \cong \mathbb{P}^{2} \# \mathbb{P}^{2} \# \mathbb{P}^{2} \# \mathbb{P}^{2}$.
7. INCOMPLETE

