MAT598 - Additional Problem Set 05

Joseph Wells Arizona State University

Fall 2015

- 1. For a covering space $p: \tilde{X} \to X$ and a subspace $A \subseteq X$, let $\tilde{A} = p^{-1}(A)$. Show that the restriction $p|_{\tilde{A}}: \tilde{A} \to A$ is a covering space.
- 2. Construct an uncountable number of nonisomorphic covering spaces of $S^1 \vee S^1$. Deduce that a free group on 2 generators has an uncountable number of distinct subgroups. Is this also true of the free abelian group on two generators?
- **3.** [May 2015] Let F_n denote the free group on n generators. Prove that for any $n \ge 3$, F_2 contains a subgroup isomorphic to F_n . What is the index of this subgroup in F_2 ?
- 4. Let \tilde{X} and \tilde{Y} be simply-connected covering spaces of the path-connected, locally path-connected spaces X and Y. Show that if $X \simeq Y$, then $\tilde{X} \simeq Y$. [Hint: See *Hatcher*, Chapter 0, Exercise 10.]
- **5.** [August 2015]
 - **a.** Find all connected covers of T^2 . Which ones are normal?
 - **b.** Find all the covers $T^2 \to T^2$ and their degree.
- 6.
- **a.** Show that a map $f: X \to Y$ between Hausdorff spaces is a covering space if X is compact and f is a local homeomorphism, meaning that for each $x \in X$ there are open neighborhoods U of x in X and V of f(x) in Y with f a homeomorphism from U to V.
- **b.** Give an example where this fails if X is noncompact.
- 7. Construct a simply-connected covering space for each of the following spaces:
 - a. $S^1 \vee S^2$.
 - **b.** The union of S^2 and an arc joining two distinct points of S^2 .
 - **c.** S^2 with two points identified.
 - **d.** $\mathbb{RP}^2 \vee \mathbb{RP}^2$.
 - e. S^2 with two arcs joining two distinct pairs of points.
 - f. $S^1 \vee \mathbb{RP}^2$.
 - **g.** \mathbb{RP}^2 with an arc joining two distinct points.
 - **h.** $S^1 \vee T^2$, where T^2 is the torus.