MAT598 - Additional Problem Set 04

Joseph Wells
Arizona State University

Fall 2015

1. Let $g \geq 2$ and let X be the surface of genus g. Let $Y=S^{2} \vee \underbrace{S^{1} \vee \cdots \vee S^{1}}_{2 g}$.
a. Show that $\pi_{1}(X) \neq \pi_{1}(Y)$.
b. Show that the abelianization of $\pi_{1}(X)$ is isomorphic to the abelianization of $\pi_{1}(Y)$.
2. Let K be the graph formed from 6 vertices and 9 edges as shown below, and let X be formed by attaching a 2-cell along each loop formed by a cycle of four edges. Show that $\pi_{1}(X)=0$.

3. [May 2015] Let X denote the topological space obtained by gluing the meridian of a torus to a longitude of another torus. Find a presentation for $\pi_{1}(X)$.
4. [August 2015] Let X denote the topological space obtained by gluing the boundary of a Möbius strip to a meridian of a torus. Find a presentation for $\pi_{1}(X)$.
5. Let X be the disk, annulus, or Möbius band, and let $\partial X \subseteq X$ be its boundary circle or circles.
a. For $x \in X$, show that the inclusion $X-\{x\} \hookrightarrow X$ induces an isomorphism on $\pi_{1}(X)$ iff $x \in \partial X$.
b. If Y is also a disk, annulus, or Möbius band, show that a homeomorphism $f: X \rightarrow Y$ restricts to a homeomorphism $\partial X \rightarrow \partial Y$.
c. Deduce that the Möbius band is not homeomorphic to an annulus.
6. The mapping torus T_{f} of a map $f: X \rightarrow X$ is the quotient $X \times I /(x, 0) \sim(f(x), 1)$. In the case $X=S^{1} \vee S^{1}$ with f basepoint-preserving, compute a presentation for $\pi_{1}\left(T_{f}\right)$ in terms of the induced map $f_{*}: \pi_{1}(X) \rightarrow \pi_{1}(X)$. Do the same when $X=S^{1} \times S^{1}$. [One way to do this is to regard T_{f} as built from $X \vee S^{1}$ by attaching cells.]
