MAT598 - Additional Problem Set 03

Joseph Wells Arizona State University

Fall 2015

- 1. [May 2015] Prove that the Möbius band does not retract onto its boundary circle.
- 2. [August 2015] Given $x_0 \in S^1$, consider the subspaces $C_1 = \{x_0\} \times S^1$ and $C_2 = S^1 \times \{x_0\}$ of the torus $T^2 = S^1 \times S^1$, and a point $p \in T^2 (C_1 \cup C_2)$.
 - **a.** Does T^2 retract (resp. deformation retract) onto C_1 or C_2 ?
 - **b.** Does T^2 retract (resp. deformation retract) onto $C_1 \cup C_2$?
 - **c.** Does $T^2 \{p\}$ retract (resp. deformation retract) onto $C_1 \cup C_2$?
- **3.** For spaces $X \subseteq Y \subseteq Z$, suppose that Y is a retract of Z and Z deformation retracts onto X. Show that X is a deformation retract of Y.
- 4. Suppose that a space X deformation retracts onto a subspace X_0 and we attach X to a space Y along a subspace $A \subseteq X_0$ via the map $f : A \to Y$ to form a space $Z = Y \sqcup_f X$. Show that Z deformation retracts onto $Z_0 = Y \sqcup_f X_0$.
- 5. Given a space X and a path-connected subspace A containing the basepoint x_0 , show that the map $\pi_1(A, x_0) \rightarrow \pi_1(X, x_0)$ induced by the inclusion $A \hookrightarrow X$ is surjective iff every path in X with endpoints in A is homotopic to a path in A.
- 6. Show that the isomorphism $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$ is given by $[f] \mapsto (p_{1*}([f]), p_{2*}([f]))$, where p_1 and p_2 are projections of $X \times Y$ onto its two factors.