MAT598 - Additional Problem Set 03

Joseph Wells
Arizona State University

Fall 2015

1. [May 2015] Prove that the Möbius band does not retract onto its boundary circle.
2. [August 2015] Given $x_{0} \in S^{1}$, consider the subspaces $C_{1}=\left\{x_{0}\right\} \times S^{1}$ and $C_{2}=S^{1} \times\left\{x_{0}\right\}$ of the torus $T^{2}=S^{1} \times S^{1}$, and a point $p \in T^{2}-\left(C_{1} \cup C_{2}\right)$.
a. Does T^{2} retract (resp. deformation retract) onto C_{1} or C_{2} ?
b. Does T^{2} retract (resp. deformation retract) onto $C_{1} \cup C_{2}$?
c. Does $T^{2}-\{p\}$ retract (resp. deformation retract) onto $C_{1} \cup C_{2}$?
3. For spaces $X \subseteq Y \subseteq Z$, suppose that Y is a retract of Z and Z deformation retracts onto X. Show that X is a deformation retract of Y.
4. Suppose that a space X deformation retracts onto a subspace X_{0} and we attach X to a space Y along a subspace $A \subseteq X_{0}$ via the map $f: A \rightarrow Y$ to form a space $Z=Y \sqcup_{f} X$. Show that Z deformation retracts onto $Z_{0}=Y \sqcup_{f} X_{0}$.
5. Given a space X and a path-connected subspace A containing the basepoint x_{0}, show that the map $\pi_{1}\left(A, x_{0}\right) \rightarrow$ $\pi_{1}\left(X, x_{0}\right)$ induced by the inclusion $A \hookrightarrow X$ is surjective iff every path in X with endpoints in A is homotopic to a path in A.
6. Show that the isomorphism $\pi_{1}(X \times Y) \cong \pi_{1}(X) \times \pi_{1}(Y)$ is given by $[f] \mapsto\left(p_{1 *}([f]), p_{2 *}([f])\right)$, where p_{1} and p_{2} are projections of $X \times Y$ onto its two factors.
