GEOMETRY AND TOPOLOGY QUALIFYING EXAM: FALL 2015

Problem 1: Let S be the topological space with the polygonal presentation

 $\langle a, b, c, d, e | abcb^{-1}adec^{-1}ed^{-1} \rangle.$

- (a) Is S a manifold?
- (b) Is S orientable?
- (c) What is the Euler characteristic $\chi(S)$?
- (d) To which standard surface is S homeomorphic?

Problem 2:

(a) Let X be a path-connected topological space, and $x, y, z \in X$. Suppose that f_0, f_1 are 2 paths from x to y and g_0, g_1 are 2 paths from y to z. Prove that if $f_0 \cdot g_0 \simeq f_1 \cdot g_1$ and $g_0 \simeq g_1$, then $f_0 \simeq f_1$ (where \simeq denotes path-homotopy).

(b) Let X denote the topological space obtained by gluing the boundary circle of a Möbius band to a meridian of a torus. Find a presentation for $\pi_1(X)$.

Problem 3: Given $x_0 \in S^1$, consider the subspaces $C_1 = \{x_0\} \times S^1$ and $C_2 = S_1 \times \{x_0\}$ of the torus $T^2 = S^1 \times S^1$, and a point $p \in T^2 \setminus (C_1 \cup C_2)$.

- (a) Does T^2 retract (resp. deformation retract) onto C_1 or C_2 ?
- (b) Does T^2 retract (resp. deformation retract) onto $C_1 \cup C_2$?
- (c) Does $T^2 \setminus \{p\}$ retract (resp. deformation retract) onto $C_1 \cup C_2$?

Problem 4:

- (a) Find all the connected covers of T^2 . Which ones are normal?
- (b) Find all the covers $T^2 \longrightarrow T^2$ and their degree.

Problem 5. Let *M* and *N* be smooth nonempty manifolds and $F: M \to N$ a smooth map.

- (a) Define the differential dF_p of F at a point $p \in M$.
- (b) Prove that, if F is a diffeomorphism, then $\dim(M) = \dim(N)$.

(c) Suppose that M is compact and $N = \mathbb{R}^k$. Prove that, if k > 0, then F cannot be a smooth submersion.¹

¹Hint: Consider the map $h: M \to \mathbb{R}$ given by $h(p) = |F(p)|^2$.

Problem 6.

(a) Suppose that G and H are Lie groups and $F: G \to H$ is a Lie group homomorphism. Prove that F has constant rank.

- (b) Prove that SU(n) is a properly embedded Lie subgroup of U(n).² What is its dimension?
- (c) Prove that U(n) and SU(n) are compact. Is $SL(n, \mathbb{C})$ compact?

Problem 7. In part (c), you do not need to justify your answer.

- (a) Prove that every Lie group G is parallelizable (i.e., TG is trivial).
- (b) Show that a smooth parallelizable manifold *M* is orientable.
- (c) Suppose $\pi: \tilde{M} \to M$ is a smooth covering map. Under what conditions does the orientability

of M imply that of \tilde{M} ? When does the orientability of \tilde{M} imply that of M?

Problem 8.

(a) Let M be a compact oriented manifold without boundary³. Prove that, for all $\omega \in \Omega^k(M)$ and $\eta \in \Omega^{n-k-1}(M)$,

$$\int_M d\omega \wedge \eta = (-1)^{k+1} \int_M \omega \wedge d\eta$$

(b) Show that there is a smooth vector field on S^2 that vanishes at exactly one point.⁴

(c) Show that there is a smooth one-form on S^2 that vanishes at exactly one point.⁵ Is it possible

to find a smooth, exact one-form on S^2 that vanishes at exactly one point? Why or why not?

$$\sigma(x,y,z) = \frac{(x,y)}{1-z}, \quad \sigma^{-1}(u,v) = \frac{(2u,2v,u^2+v^2-1)}{u^2+v^2+1}, \quad \tilde{\sigma}(\mathbf{x}) = -\sigma(-\mathbf{x}).$$

⁵Hint: Use your answer to (b) in conjunction with any Riemannian metric on S^2 .

²Hint: Use part (a). You may assume that U(n) is a Lie group.

 $^{^{3}}$ All manifolds in problems 4-8 are assumed to be without boundary.

⁴Suggestion: Use stereographic projection. For convenience, the formulas for the charts $\sigma : S^2 \setminus \{N\} \to \mathbb{R}^2$ and $\tilde{\sigma} : S^2 \setminus \{S\} \to \mathbb{R}^2$, where N = (0, 0, 1) and S = (0, 0, -1), are given by