GEOMETRY AND TOPOLOGY QUALIFYING EXAM: SPRING 2015

Problem 1: Let S be the topological space with the polygonal presentation

$$\langle a,b,c,d,e|aba^{-1}cb^{-1}ded^{-1}ec^{-1}\rangle.$$

- (a) Is S a manifold?
- (b) Is S orientable?
- (c) What is the Euler characteristic $\chi(S)$?
- (d) To which standard surface is S homeomorphic?

Problem 2:

(a) Let X denote the topological space obtained by gluing the meridian of a torus to a longitude of another torus. Find a presentation for $\pi_1(X)$.

(b) Prove that the Möbius band does not retract onto its boundary circle.

Problem 3:

(a) Prove or disprove: in any topological space, the product of paths is associative.

(b) Let X be a path-connected, locally path-connected topological space with $\pi_1(X)$ finite. Prove that any continuous map $f: X \longrightarrow S^1$ is nullhomotopic.

Problem 4: Let F_n denote the free group on n generators. Prove that for any $n \ge 3$, F_2 contains a subgroup isomorphic to F_n . What is the index of this subgroup?

Problem 5. Let *M* be a smooth manifold and $f \in C^{\infty}(M)$.

- (a) Give the definition of the differential df of f.
- (b) Suppose that M is connected. Prove that f is constant on M if and only if df = 0.
- (c) State and prove the "fundamental theorem" for line integrals.¹

Problem 6. Let G be a Lie group which acts smoothly on the smooth manifolds M and N.

(a) Suppose that $\Phi: M \to N$ is a smooth map that is equivariant relative to the actions on M and N. Suppose further that the action of G on M is transitive. Prove that Φ has constant rank.²

¹This is the theorem which expresses the value of $\int_{\gamma} df$ for a smooth function f and piecewise smooth path γ .

 $^{^{2}}$ Hint: Mimic the proof that a Lie group homomorphism has constant rank.

(b) Use (a) to prove that O(n) is a smooth n(n-1)/2-dimensional Lie subgroup of $GL(n, \mathbb{R})$. Describe the tangent space $T_IO(n) \subset M(n, \mathbb{R})$.³

(c) Prove that O(n) is compact.

Problem 7. Let M be a smooth compact oriented manifold with boundary ∂M .

(a) Prove that there does not exist a smooth retraction of $r: M \to \partial M$.⁴

(b) Let B be the closed unit ball in \mathbb{R}^n . Use (a) to show that every smooth map $F: B \to B$ must have a fixed point.⁵

Problem 8. Let (M, g) be a smooth *n*-dimensional Riemannian manifold.

(a) Let N be a smooth manifold and $F: N \to M$ be a smooth map. Prove that $h = F^*g$ is a smooth metric on N if and only if F is an immersion.

(b) Part (a), together with a certain big theorem, implies that every smooth manifold admits a Riemannian metric. State (some version of) this big theorem.

(c) Use the existence of smooth partitions of unity to give another proof that every manifold admits a Riemannian metric.

(d) Prove that if n = 1, (M, g) is locally isometric to (\mathbb{R}, g_{euc}) .⁶

³*Hint:* For the first part, let $GL(n, \mathbb{R})$ act on itself by right multiplication and define a right action of $GL(n, \mathbb{R})$ on $M(n, \mathbb{R})$ by $X \cdot B = B^T X B$. Then consider the map $\Phi : GL(n, \mathbb{R}) \to M(n, \mathbb{R})$ given by $\Phi(A) = A^T A$.

⁴*Hint: Consider an orientation form* $\omega_{\partial M}$ *on* ∂M *and use Stokes's theorem.*

⁵*Hint:* Any map from B to B without a fixed point can be used to define an explicit retraction $\rho: B \to \partial B$.

⁶Hint: Use part (a). The expression of g in any local coordinate t will have the form $g = f(t)dt \otimes dt$ for some smooth positive f.