Recitation 12: Triple Integrals in
 Cylindrical/Spherical Coordinates \& Integrals For Mass Calculations \& Change of Variables in Multiple Integrals

Joseph Wells
Arizona State University

April 14, 2015

$$
\begin{array}{r}
\text { Cartesian Coordinates }:(x, y, z) \\
\text { Cylindrical Coordinates }:(r, \theta, z) \\
\text { Spherical Coordinates }:(\rho, \phi, \theta)
\end{array}
$$

Converting between 3-D coordinate systems:

$$
\begin{array}{cc}
\text { Cartesian } \rightarrow \text { Cylindrical } & \text { Cylindrical } \rightarrow \text { Cartesian } \\
r^{2}=x^{2}+y^{2} & x=r \cos \theta \\
\tan \theta=\frac{y}{x} & y=r \sin \theta \\
z=z & z=z \\
\text { Cartesian } \rightarrow \text { Spherical } & \text { Spherical } \rightarrow \text { Cartesian } \\
\rho^{2}=x^{2}+y^{2}+z^{2} & x=\rho \sin \phi \cos \theta \\
\phi=\text { use trig } & y=\rho \sin \phi \sin \theta \\
\theta=\text { use trig } & z=\rho \cos \phi
\end{array}
$$

As we saw with polar coordinates, integrating in these new coordinate systems changes our differentials slightly.

$$
\begin{aligned}
\iiint f d V & =\iiint f(x, y, z) d x d y d z \\
& =\iiint f(r, \theta, z) r d r d \theta d z \\
& =\iiint f(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta
\end{aligned}
$$

Example. Evaluate the integral in cylindrical coordinates:
$\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}} \sqrt{x^{2}+y^{2}} d z d y d x$.
Solution.
If we actually draw the bounded region in the $x y$-plane, we see that it is the quarter of the circle of radius 3 in the first quadrant. So we get that our region in cylindrical coordinates is

$$
R=\left\{(r, \theta, z): 0 \leq r \leq 3,0 \leq \theta \leq \frac{\pi}{2}, 0 \leq z \leq r\right\}
$$

hence

$$
\begin{aligned}
\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}} \sqrt{x^{2}+y^{2}} d z d y d x & =\int_{0}^{\pi / 2} \int_{0}^{3} \int_{0}^{r} r^{2} d z d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{3} r^{3} d r d \theta \\
& =\int_{0}^{\pi / 2} \frac{81}{4} d \theta=\frac{81}{8} \pi
\end{aligned}
$$

Example. Evaluate the integral in spherical coordinates:
$\iiint_{D} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d V$, where D is the unit ball.
Solution. The unit ball is $D=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$, or in spherical coordinates,

$$
D=\{(\rho, \phi, \theta): 0 \leq \rho \leq 1,0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi\}
$$

Hence

$$
\begin{aligned}
\iiint_{D} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d V & =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} e^{-\rho^{2}} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\pi} e^{-\rho^{2}} \rho^{2} \sin \phi d \phi d \theta d \rho \\
& =\int_{0}^{1} \int_{0}^{2 \pi} 2 e^{-\rho^{2}} \rho^{2} d \theta d \rho \\
& =\int_{0}^{1} 4 \pi e^{-\rho^{2}} \rho^{2} d \rho
\end{aligned}
$$

$=u h-o h . . . I$ think there's a typo in the problem statement

Center of Mass in Three Dimensions
Definition. Let ρ be a density function on a closed bounded region $D \subseteq \mathbb{R}^{3}$. The coordinates of the center of mass of the region are $(\bar{x}, \bar{y}, \bar{z})$, where

$$
\begin{aligned}
& \bar{x}=\frac{M_{y z}}{m}=\frac{1}{m} \iiint_{D} x \rho(x, y, z) d V, \\
& \bar{y}=\frac{M_{x z}}{m}=\frac{1}{m} \iiint_{D} y \rho(x, y, z) d V, \\
& \bar{z}=\frac{M_{x y}}{m}=\frac{1}{m} \iiint_{D} z \rho(x, y, z) d V,
\end{aligned}
$$

and $m=\iiint_{D} \rho(x, y, z) d V$ is the mass of the region. $M_{x y}, M_{x z}, M_{y z}$ are the moments with respect to the $x y$ -,$x z$-, and $y z$-planes (respectively).

Example. Find the center of mass of the region bounded by the paraboloid $z=4-x^{2}-y^{2}$ and $z=0$ with density $\rho(x, y, z)=5-z$.

Solution.

It might be easier to do this in cylindrical coordinates. We have that $D=\{(r, \theta, z) \mid 0 \leq$ $\left.r \leq 2,0 \leq \theta \leq 2 \pi, 0 \leq z \leq 4-r^{2}\right\}$ and then $\rho(r, \theta, z)=5-z$. So

$$
\begin{aligned}
m & =\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{4-r^{2}}(5-z) r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2}-\frac{1}{2} r^{5}-r^{3}+12 r d r d \theta \\
& =\int_{0}^{2 \pi} \frac{44}{3} d \theta=\frac{88}{3} \pi
\end{aligned}
$$

Using the substitution $x=r \sin \theta$, we then have that

$$
\begin{aligned}
\bar{x} & =\frac{3}{44 \pi} \int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{4-r^{2}} r^{2} \sin \theta(5-z) d z d r d \theta \\
& =\text { stuff }
\end{aligned}
$$

Change of coordinates is useful because regions are ill-behaved in the real world, but they might be just minor modifications of relatively nice regions. This is more-or-less the underlying principle of differential geometry.

Definition. Let $x=g(u, v)$ and $y=h(u, v)$ be differentiable on a region of the $u v$-plane. The Jacobian (determinant) is

$$
J(u, v)=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u} .
$$

Theorem 1. Suppose R is a region in the xy-plane and S is a region in the uv-plane. Suppose further that $x=g(u, v)$ and $y=h(u, v)$ is a one-to-one transformation taking S to R, and that g, h both have continuous first partial derivatives in S. If f is continuous on R, then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(g(u, v), h(u, v))|J(u, v)| d A
$$

The 3-dimensional analogue of this theorem is exactly what you would expect it to be, and results in

$$
\iiint_{R} f(x, y, z) d V=\iiint_{S} f(g(u, v, w), h(u, v, w), k(u, v, w))|J(u, v, w)| d V
$$

Example. Let R be the region bounded by $x+y=1, x-y=1, x+y=3, x-y=-1$. Use a change of coordinates to evaluate the integral $\iint_{R}(x+y)^{2} \sin ^{2}(x-y) d A$

Solutions.

Let $u=x+y$ and $v=x-y$. Then we have that $1 \leq u \leq 3$ and $-1 \leq v \leq 1$. As well, $x=\frac{1}{2}(u+v)$ and $y=\frac{1}{2}(u-v)$, so $J(u, v)=-\frac{1}{2}$. Thus

$$
\begin{aligned}
\iint_{R}(x+y)^{2} \sin ^{2}(x-y) d A & =\frac{1}{2} \iint_{S} u^{2} \sin ^{2} v d A \\
& =\frac{1}{2} \int_{-1}^{1} \int_{1}^{3} u^{2} \sin ^{2} v d u d v \\
& =\frac{13}{3} \int_{-1}^{1} \sin ^{2} v d u d v \\
& =\frac{13}{6}(2-\sin (2))
\end{aligned}
$$

Assignment

Worksheet 12:

https://mathpost.asu.edu/~wells/math/teaching/mat272_spring2015/homework12.pdf
As always, you may work in groups, but every member must individually submit a homework assignment.

