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Cartesian Coordinates :(z, vy, 2)
Cylindrical Coordinates :(r, 0, z)
Spherical Coordinates :(p, ¢, 0)

Converting between 3-D coordinate systems:

Cartesian — Cylindrical Cylindrical — Cartesian

r? = 2%+ x =rcosl
tanf = £ y = rsinf
x
z2=2z z2=2z

Cartesian — Spherical Spherical — Cartesian
02 =% +y? + 22 x = psin ¢ cos
¢ = use trig y = psin¢sinf
0 = use trig 2 = pcos ¢



As we saw with polar coordinates, integrating in these new coordinate systems changes
our differentials slightly.

// de:///f(w,y,z)dxdydz
:///f(r,&,z)rdrd@dz
— [[[ 10.00)siw o dp s as



Example. Evaluate the integral in cylindrical coordinates:
V9—z2 m2+y
/ / Va2 +y?dzdydx.

Solution.

If we actually draw the bounded region in the zy-plane, we see that it is the quarter
of the circle of radius 3 in the first quadrant. So we get that our region in cylindrical
coordinates is

R:{(r,e,z):0§7’<3,0<9§g,0§2§¢},

hence

V9—2? 272+y w/2 3 pr
/ / Vat+y?dzdydx / / / r? dz dr df
o Jo



Example. Evaluate the integral in spherical coordinates:

/// e~ @+ 2% g1 where D is the unit ball.
D

Solution. The unit ball is D = {(z,y, 2) : 2>+ y*+ 2% < 1}, or in spherical coordinates,
D={(p,¢,0) : 0<p<10<p<m0<6 <2}

Hence

2 s 1
/// e~ @) gy = / / / e " p?sin ¢ dp de dO
D o Jo Jo

2 T
/ / e p*sin ¢ dop do dp
0 0

= uh-oh...I think there’s a typo in the problem statement



Center of Mass in Three Dimensions

Definition. Let p be a density function on a closed bounded region D C R3?. The
coordinates of the center of mass of the region are (Z,7,%), where

e ][ aotennyav,
m

E:
m

— MZEZ

Y= —/// yp(x,y,z)dV,
m m
M

7= Mo /// pz,y,2) dV.

m

and m = [[[, p(z,y,2)dV is the mass of the region. M,,, M,., M,. are the moments
with respect to the zy-, z2-, and yz-planes (respectively).



Example. Find the center of mass of the region bounded by the paraboloid z = 4—x%—y?

and z = 0 with density p(z,y,2) =5 — 2.
Solution.

It might be easier to do this in cylindrical coordinates. We have that D = {(r,0,z) |0 <
r<20<60<2m0<z<4-7r%} and then p(r,0,z) =5 — 2. So

2 p2  pd—r?
m:/ / / (5 —2)rdzdrdf
o Jo Jo
2m 2 1
=/ / —5r? =’ 4 12rdrdf

2w 44
:/ —d9—§ﬂ'
. 3 3

Using the substitution z = rsin ), we then have that

2 472
447r // r?sin (5 — 2) dz dr df
—stuff



Change of coordinates is useful because regions are ill-behaved in the real world, but
they might be just minor modifications of relatively nice regions. This is more-or-less the
underlying principle of differential geometry.

Definition. Let x = g(u,v) and y = h(u, v) be differentiable on a region of the uv-plane.
The Jacobian (determinant) is

9z _%83/ ox Jy
C Qudv  Ovou

oz
J(u,v) = det (% gy
ou v



Theorem 1. Suppose R is a region in the xy-plane and S is a region in the uv-plane.
Suppose further that x = g(u,v) and y = h(u,v) is a one-to-one transformation taking S
to R, and that g, h both have continuous first partial derivatives in S. If f is continuous
on R, then

//Rf(fﬂ,y)d/l://Sf(g(u,v),h(u,v))|J(u7v)|dA'

The 3-dimensional analogue of this theorem is exactly what you would expect it to be,
and results in

///f (@,y,2)dV = / / /S F(g(u,v,w), o, v, w), k(u, 0, w))| T (. 0, w)| V.



Example. Let R be the region bounded by z+y=1,z—y=1,z+y=3, . —y = —1.

Use a change of coordinates to evaluate the integral (z +y)*sin*(x — y) dA
R

Solutions.

Let u=x 4y and v = x — y. Then we have that 1 <u <3 and —1 < v < 1. As well,
z=3(u+v)and y = 3(u—v), so J(u,v) = —%. Thus

//(:p—l—y)2 sinz(x—y)dA:%//UQSinQUdA
R
/ /u sin® v du dv

= — sin? v du dv
1

=B @),

6



Assignment

Worksheet 12:
https://mathpost.asu.edu/~wells/math/teaching/mat272_spring2015/homework12.pdf

As always, you may work in groups, but every member must individually submit a
homework assignment.



