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Cartesian Coordinates :(x, y, z)

Cylindrical Coordinates :(r, θ, z)

Spherical Coordinates :(ρ, φ, θ)

Converting between 3-D coordinate systems:

Cartesian → Cylindrical Cylindrical → Cartesian
r2 = x2 + y2 x = r cos θ

tan θ = y
x

y = r sin θ
z = z z = z

Cartesian → Spherical Spherical → Cartesian
ρ2 = x2 + y2 + z2 x = ρ sinφ cos θ
φ = use trig y = ρ sinφ sin θ
θ = use trig z = ρ cosφ
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As we saw with polar coordinates, integrating in these new coordinate systems changes
our differentials slightly.

∫∫∫
f dV =

∫∫∫
f(x, y, z) dx dy dz

=

∫∫∫
f(r, θ, z) r dr dθ dz

=

∫∫∫
f(ρ, φ, θ) ρ2 sinφ dρ dφ dθ
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Example. Evaluate the integral in cylindrical coordinates:∫ 3

0

∫ √9−x2
0

∫ √x2+y2

0

√
x2 + y2 dz dy dx.

Solution.

If we actually draw the bounded region in the xy-plane, we see that it is the quarter
of the circle of radius 3 in the first quadrant. So we get that our region in cylindrical
coordinates is

R =
{

(r, θ, z) : 0 ≤ r ≤ 3, 0 ≤ θ ≤ π

2
, 0 ≤ z ≤ r

}
,

hence ∫ 3

0

∫ √9−x2
0

∫ √x2+y2

0

√
x2 + y2 dz dy dx =

∫ π/2

0

∫ 3

0

∫ r

0

r2 dz dr dθ

=

∫ π/2

0

∫ 3

0

r3 dr dθ

=

∫ π/2

0

81

4
dθ =

81

8
π.
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Example. Evaluate the integral in spherical coordinates:∫∫∫
D

e−(x
2+y2+z2) dV , where D is the unit ball.

Solution. The unit ball is D = {(x, y, z) : x2 + y2 + z2 ≤ 1}, or in spherical coordinates,

D = {(ρ, φ, θ) : 0 ≤ ρ ≤ 1, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π}.

Hence∫∫∫
D

e−(x
2+y2+z2) dV =

∫ 2π

0

∫ π

0

∫ 1

0

e−ρ
2

ρ2 sinφ dρ dφ dθ

=

∫ 1

0

∫ 2π

0

∫ π

0

e−ρ
2

ρ2 sinφ dφ dθ dρ

=

∫ 1

0

∫ 2π

0

2e−ρ
2

ρ2 dθ dρ

=

∫ 1

0

4πe−ρ
2

ρ2 dρ

= uh-oh...I think there’s a typo in the problem statement
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Center of Mass in Three Dimensions

Definition. Let ρ be a density function on a closed bounded region D ⊆ R3. The
coordinates of the center of mass of the region are (x, y, z), where

x =
Myz

m
=

1

m

∫∫∫
D

xρ(x, y, z) dV,

y =
Mxz

m
=

1

m

∫∫∫
D

yρ(x, y, z) dV,

z =
Mxy

m
=

1

m

∫∫∫
D

zρ(x, y, z) dV,

and m =
∫∫∫

D
ρ(x, y, z) dV is the mass of the region. Mxy,Mxz,Myz are the moments

with respect to the xy-, xz-, and yz-planes (respectively).
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Example. Find the center of mass of the region bounded by the paraboloid z = 4−x2−y2
and z = 0 with density ρ(x, y, z) = 5− z.

Solution.

It might be easier to do this in cylindrical coordinates. We have that D = {(r, θ, z) | 0 ≤
r ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 4− r2} and then ρ(r, θ, z) = 5− z. So

m =

∫ 2π

0

∫ 2

0

∫ 4−r2

0

(5− z)r dz dr dθ

=

∫ 2π

0

∫ 2

0

−1

2
r5 − r3 + 12r dr dθ

=

∫ 2π

0

44

3
dθ =

88

3
π.

Using the substitution x = r sin θ, we then have that

x =
3

44π

∫ 2π

0

∫ 2

0

∫ 4−r2

0

r2 sin θ(5− z) dz dr dθ

= stuff
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Change of coordinates is useful because regions are ill-behaved in the real world, but
they might be just minor modifications of relatively nice regions. This is more-or-less the
underlying principle of differential geometry.

Definition. Let x = g(u, v) and y = h(u, v) be differentiable on a region of the uv-plane.
The Jacobian (determinant) is

J(u, v) = det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.
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Theorem 1. Suppose R is a region in the xy-plane and S is a region in the uv-plane.
Suppose further that x = g(u, v) and y = h(u, v) is a one-to-one transformation taking S
to R, and that g, h both have continuous first partial derivatives in S. If f is continuous
on R, then ∫∫

R

f(x, y) dA =

∫∫
S

f(g(u, v), h(u, v))|J(u, v)| dA.

The 3-dimensional analogue of this theorem is exactly what you would expect it to be,
and results in

∫∫∫
R

f(x, y, z) dV =

∫∫∫
S

f(g(u, v, w), h(u, v, w), k(u, v, w))|J(u, v, w)| dV.
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Example. Let R be the region bounded by x+ y = 1, x− y = 1, x+ y = 3, x− y = −1.

Use a change of coordinates to evaluate the integral

∫∫
R

(x+ y)2 sin2(x− y) dA

Solutions.

Let u = x + y and v = x − y. Then we have that 1 ≤ u ≤ 3 and −1 ≤ v ≤ 1. As well,
x = 1

2
(u+ v) and y = 1

2
(u− v), so J(u, v) = −1

2
. Thus

∫∫
R

(x+ y)2 sin2(x− y) dA =
1

2

∫∫
S

u2 sin2 v dA

=
1

2

∫ 1

−1

∫ 3

1

u2 sin2 v du dv

=
13

3

∫ 1

−1
sin2 v du dv

=
13

6
(2− sin(2)) .
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Assignment

Worksheet 12:

https://mathpost.asu.edu/~wells/math/teaching/mat272_spring2015/homework12.pdf

As always, you may work in groups, but every member must individually submit a
homework assignment.


