Recitation 11: Double Integrals in Polar Coordinates \& Triple Integrals

Joseph Wells
Arizona State University

$$
\text { April 5, } 2015
$$

Sometimes polar coordinates are just nicer to work with. Suppose $f(r, \theta)$ is a function of polar coordinates and R is the region $R=\{(r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta\}$. Then the volume under $f(r, \theta)$ is given by

$$
\iint_{R} f(r, \theta) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r, \theta) r d r d \theta
$$

More generally, if r is bounded by some (nonnegative) functions $g(\theta)$ and $h(\theta)$, we have that $R=\{(r, \theta) \mid g(\theta) \leq r \leq h(\theta), \alpha \leq \theta \leq \beta\}$ and the volume under $f(r, \theta)$ is given by

$$
\iint_{R} f(r, \theta) d A=\int_{\alpha}^{\beta} \int_{g(\theta)}^{h(\theta)} f(r, \theta) r d r d \theta
$$

Example. Find the volume of the solid bounded between the paraboloids $f(x, y)=$ $x^{2}+y^{2}$ and $g(x, y)=2-x^{2}-y^{2}$.

Solution. In polar coordinates $r^{2}=x^{2}+y^{2}$, so our two paraboloids are given by $\tilde{f}(r, \theta)=$ r^{2} and $\tilde{g}(r, \theta)=2-r^{2}$. These paraboloids meet along the circle $r=1$, so our region is given by $R=\{(r, \theta) \mid 0 \leq r \leq 1: 0 \leq \theta \leq 2 \pi\}$. Hence

$$
\begin{aligned}
\iint_{R} \tilde{g}(r, \theta)-\tilde{f}(r, \theta) d A & =\int_{0}^{2 \pi} \int_{0}^{1}\left(2-2 r^{2}\right) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} 2 r-2 r^{3} d r d \theta \\
& =\int_{0}^{2 \pi}\left[r^{2}-\frac{1}{2} r^{4}\right]_{0}^{1} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{2} d \theta \\
& =\left[\frac{1}{2} \theta\right]_{0}^{2 \pi}=\pi
\end{aligned}
$$

Example. A thin plate has a density given by $\rho(r, \theta)=4+r \sin \theta \mathrm{~kg} / \mathrm{m}^{2}$. Find the mass of the thin half annulus represented by the region $R=\{(r, \theta) \mid 1 \leq r \leq 4,0 \leq \theta \leq \pi\}$.

Solution.

$$
\begin{aligned}
M=\iint_{R} \rho(r, \theta) d A & =\int_{0}^{\pi} \int_{1}^{4}(4+r \sin \theta) r d r d \theta \\
& =\int_{0}^{\pi} \int_{1}^{4} 4 r+r^{2} \sin \theta d r d \theta \\
& =\int_{0}^{\pi}\left[2 r^{2}+\frac{1}{3} r^{3} \sin \theta\right]_{1}^{4} d \theta \\
& =\int_{0}^{\pi} 30+21 \sin \theta d \theta \\
& =[30 \theta-21 \cos \theta]_{0}^{\pi}=30 \pi+42
\end{aligned}
$$

Example. Find the volume of the region between the sphere $x^{2}+y^{2}+z^{2}=19$ and the hyperboloid $z^{2}-x^{2}-y^{2}=1$, for $z>0$.

Solution. Inner integral with respect to z : For any values x, y, we have that $x^{2}+$ $y^{2}+1 \leq z^{2} \leq 19-x^{2}-y^{2}$, so $\sqrt{x^{2}+y^{2}+1} \leq z \leq \sqrt{19-x^{2}-y^{2}}$.
Outer integrals with respect to our region: The two surfaces intersect along the circle $x^{2}+y^{2}=9$, so our region is $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 9\right\}$, which can be rewritten as $R=\left\{(x, y) \mid-\sqrt{9-y^{2}} \leq x \leq \sqrt{9-y^{2}},-3 \leq y \leq 3\right\}$. As such, our integral becomes

$$
\begin{aligned}
\iiint_{R} d V & =\int_{-3}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}+1}}^{\sqrt{19-x^{2}-y^{2}}} d z d x d y \\
& =\int_{-3}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} \sqrt{19-x^{2}-y^{2}}-\sqrt{x^{2}+y^{2}+1} d z d x d y
\end{aligned}
$$

Because we can rewrite our region in polar coordinates as $R=\{(r, \theta) \mid 0 \leq r \leq 3,0 \leq$ $\theta \leq 2 \pi\}$, our integral becomes

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{3} r \sqrt{19-r^{2}}-r \sqrt{r^{2}+1} d r d \theta \\
& =\int_{0}^{2 \pi}\left[-\frac{1}{3}\left(19-r^{2}\right)^{3 / 2}-\frac{1}{3}\left(r^{2}+1\right)^{3 / 2}\right]_{0}^{3} d \theta \\
& =\int_{0}^{2 \pi}-\frac{1}{3} 10^{3 / 2}-\frac{1}{3} 10^{3 / 2}+\frac{1}{3} 19^{3 / 2}+\frac{1}{3} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{3}(1+19 \sqrt{19}-20 \sqrt{10}) d \theta \\
& =\frac{2 \pi}{3}(1+19 \sqrt{19}-20 \sqrt{10})
\end{aligned}
$$

Assignment

Worksheet 11:

https://mathpost.asu.edu/~wells/math/teaching/mat272_spring2015/homework11.pdf
As always, you may work in groups, but every member must individually submit a homework assignment.

