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Lagrange multipliers are just constants that crop up in optimization problems.



3

Procedure:

Let f be your objective function (the one we’re trying to optimize) and g the the
constraint function. Suppose both f and g are differentiable on a region of R2 with
∇g(x, y) 6= −→0 on the curve g(x, y) = 0. To locate the maximum and minimum values of
f subject to the constraint g(x, y) = 0,

1. Find values of x, y, and λ (if they exist) that satisfy the equations

∇f(x, y) = λ∇g(x, y) and g(x, y) =
−→
0 .

2. For all pairs (x, y) from step 1, choose the ones corresponding to the largest
and smallest values of f(x, y).

In other words, step one is just solving the system of equations:

fx = λgx, fy = λgy, and g(x, y) = 0.

Note: for more dimensions, this procedure is completely analogous.
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Example. Find the maximum and minimum values of f(x, y, z) = 2x + z2 subject to
the constraint that x2 + y2 + 2z2 = 25.

Solution.

Our constraint function is g(x, y, z) = x2 + y2 + 2z2 − 25. ∇f(x, y, z) = 〈2, 0, 2z〉 and
∇g(x, y, z) = 〈2x, 2y, 4z〉. Since ∇g(x, y, z) = 0 precisely when (x, y, z) = (0, 0, 0) (which
is not in the domain of g), there exists some real number λ we solve the system of
equations:

2 = λ2x

0 = λ2y

2z = λ4z

x2 + y2 + 2z2 = 25.

The first equation implies that x = 1
λ
, so λ 6= 0.

The second equation implies that λ = 0, which cannot happen, or y = 0. So y = 0.
The third equation implies that either z = 0 or λ = 1

2
.
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If z = 0, then x2 − 25 = 0 implies that x = ±5, hence (5, 0, 0) and (−5, 0, 0) are two
possible points for the max/min.

If λ = 1
2
, then x = 2, so 4 + z2 − 25 = 0 implies that z = ±

√
21, so (2, 0,−

√
21) and

(2, 0,
√

21) are other possible candidates. Checking these explicitly,

f(−5, 0, 0) = −10,

f(5, 0, 0) = 10,

f(2, 0,−
√

21) = 4− 21 = −17,

f(2, 0,
√

21) = 4 + 21 = 25.

Thus (2, 0,−
√

21) corresponds to the minimum and (2, 0,
√

21) corresponds to the max-
imum.



6

Definition. Let f(x, y) be a function defined on a rectangular region R in the xy-plane.
f is integrable if lim∆→0

∑n
k=1 f(xk, yk)∆Ak exists for all partitions of R. This limit is

the double integral over R, which we write∫∫
R

f(x, y) dA = lim
∆→0

n∑
k=1

f(xk, yk)∆Ak.

This integral is the volume of the solid bounded above by the surface z = f(x, y) and
the xy-plane over the region R.

In the real world, these Riemann sums are absolutely horrible to work with.
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Let z = f(x, y) be a surface and let R := {(a, b) : a ≤ x ≤ b, c ≤ y ≤ d} be a region.
Holding y fixed at some constant, we ultimately end up with just a 2-D curve, and we
can take the integral under that curve to get the area A(y) =

∫ b
a
f(x, y) dx. Now we have

a function of the area under each slice of the curve. Integrating over those gives us the
volume V =

∫ d
c
A(y) dy.

In this class (or at least, this section anyway), the order of integration is unimportant,
and it is formally stated as the following theorem:
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Theorem 1 (Fubini(-Tonelli)). If f(x, y) is continous and R = {(x, y) : a ≤ x ≤ b, c ≤
y ≤ d} is a rectangular region,∫∫

R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy.
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Example. Evaluate

∫∫
R

(x2 − y2)2 dA over the region R = {(x, y) : −1 ≤ x ≤ 2, 0 ≤

y ≤ 1}.

Solution. ∫ 1

0

∫ 2

−1

(x2 − y2)2 dx dy =

∫ 1

0

∫ 2

−1

(
x4 − 2x2y2 + y2

)
dx dy

=

∫ 1

0

[
1

5
x5 − 2

3
x3y2 + y2x

]2

−1

dy

=

∫ 1

0

(
3y4 − 6y2 +

33

5

)
dy

=

[
3

5
y5 − 2y3 +

33

5
y

]1

0

=
26

5
.
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As it turns out, the whole reason for Fubini’s theorem is that it’s sometimes much easier
to evaluate the integral in one order than the other. This is demonstrated by the following
example.

Example. Evaluate

∫∫
R

x sec2(xy) dA over the region R = {(x, y) : 0 ≤ x ≤ π
3
, 0 ≤

y ≤ 1}.

Solution. We’ll first try ∫ 1

0

∫ π/3

0

x sec2(xy) dx dy.

Remember, here y is just a constant. To do this, we’ll have to integrate by parts with
u = x and dv = sec2(xy) dx. Then du = dx and v = 1

y
tan(xy). And...eww.

Now try ∫ π/3

0

∫ 1

0

x sec2(xy) dy dx =

∫ π

0

x

∫ 1

0

sec2(xy) dy dx
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=

∫ π/3

0

x

[
1

x
tan(xy)

]y=1

y=0

dx

=

∫ π/3

0

x

[
1

x
tan(x)− 1

x
tan(0)

]
dx

=

∫ π/3

0

tan(x) dx

=
[
− ln | cos(x)|

]π/3
0

= ln(2).
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Assignment

Worksheet 09:

https://mathpost.asu.edu/~wells/math/teaching/mat272_spring2015/homework09.pdf

As always, you may work in groups, but every member must individually submit a
homework assignment.


