Recitation 08: Tangent Planes \& Linear Approximation; Maximum/Minimum Problems

Joseph Wells
Arizona State University

March 16, 2015

Since the gradient at a point is a vector normal to the surface at that point, that normal vector uniquely defines a plane tangent to the surface at that point.

Definition. Let $F(x, y, z)=0$ be some surface and $P=(a, b, c)$ a point on the surface where $\nabla F(a, b, c) \neq 0$. The tangent plane to the surface at P is given by the equation

$$
\nabla F(a, b, c) \cdot\langle x-a, y-b, z-c\rangle=0
$$

which expands to

$$
F_{x}(a, b, c)(x-a)+F_{y}(a, b, c)(y-b)+F_{z}(a, b, c)(z-c)=0
$$

Definition. With F and P as above, the normal line to $F(x, y, z)=0$ at P is given by

$$
r(t)=\langle x(t), y(t), z(t)\rangle=\vec{P}+t \nabla F(a, b, c)
$$

or, as set of parametric equations, by

$$
\left\{\begin{array}{l}
x(t)=a+t F_{x}(a, b, c) \\
y(t)=b+t F_{y}(a, b, c) \\
z(t)=c+t F_{z}(a, b, c)
\end{array}\right.
$$

Example. Find the equation of the tangent plane and normal line to the surface $z=e^{x y}$ at the point $(1,0,1)$.

Solution.

Notice that for $F(x, y, z)=e^{x y}-z$, this suface is exactly $F(x, y, z)=0$. We then have that

$$
\begin{aligned}
& \nabla F(x, y, z)=\left\langle y e^{x y}, x e^{x y},-1\right\rangle \\
& \nabla F(1,0,1)=\langle 0,1,-1\rangle
\end{aligned}
$$

so the equation of the tangent plane is

$$
\nabla F(1,0,1) \cdot\langle x-1, y-0, z-1\rangle=y-(z-1)=0
$$

The normal line to F at the point $(1,0,1)$ is given by

$$
r(t)=\langle 1,0,1\rangle+t \nabla F(1,0,1)=\langle 1, t, 1-t\rangle .
$$

Definition. Let f be differentiable at (a, b). The linear approximation to the surface $z=f(x, y)$ at the point $(a, b, f(a, b))$ is the tangent plane at that point, given by

$$
L(x, y)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Example. Compute the linear approximation of the function $f(x, y)=\ln (1+x+y)$ at the point $(0,0)$. Use this to estimate the value $f(0.1,-0.2)$.

Solution.

$$
\begin{aligned}
L(x, y) & =f_{x}(0,0)(x-0)+f_{y}(0,0)(y-0)+f(0,0) \\
& =\frac{1}{1+0+0}(x-0)+\frac{1}{1+0+0}(y-0)+\ln (1+0+0) \\
& =x+y
\end{aligned}
$$

so

$$
f(0.1,-0.2)=-0.105361 \ldots \approx-0.1=L(0.1,-0.2)
$$

Definition. Let f be differentiable at the point (a, b). For $z=f(x, y)$, the differential $d z$ is the change from $f(a, b)$ to $f(a+d x, b+d y)$ and is given by

$$
d z=\nabla f \cdot\langle d x, d y\rangle=f_{x}(a, b) d x+f_{y}(a, b) d y
$$

$d z$ is sometimes called the total differential.

Example. Find the total differential of the function $w=f(u, x, y, z)=\frac{u+x}{y+z}$.
Solution

$$
d w=\frac{1}{y+z} d u+\frac{1}{y+z} d x-\frac{u+x}{(y+z)^{2}} d y-\frac{u+x}{(y+z)^{2}} d z
$$

Definition. Let f be a function differentiable at (a, b). We say that (a, b) is a local maximum if every point (x, y) in a neighborhood of (a, b) has the property that $f(x, y) \leq$ $f(a, b)$. Similarly, (a, b) is a local minimum if every point (x, y) in a neighborhood of (a, b) has the property that $f(x, y) \geq f(a, b)$.

Theorem 1. If f has a local max or local min at (a, b) and f_{x}, f_{y} exist, then $f_{x}(a, b)=$ $f_{y}(a, b)=0$.

Definition. A point (a, b) is called a critical point of f if $f_{x}(a, b)=f_{y}(a, b)=0$ or if at least one of f_{x} or f_{y} does not exist.

Definition. A critical point (a, b) of a function f is a saddle point if there exist points (x, y) in a neighborhood of (a, b) such that $f(x, y)>f(a, b)$ and $f(x, y)<f(a, b)$.

Theorem 2 (Second Derivative Test). Suppose that second partial derivatives of f are continuous in a neighborhood of (a, b) and that $f_{x}(a, b)=f_{y}(a, b)=0$. Let $D(x, y)=$ $f_{x x} f_{y y}-f_{x y}^{2}$, which we call the discriminant of f.

1. If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then f has a local maximum at (a, b).
2. If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then f has a local minimum at (a, b).
3. If $D(a, b)<0$, then f has a saddle point at (a, b).
4. If $D(a, b)=0$, then the test is inconclusive.

Example. Locate and classify all critical points of $f(x, y)=x^{4}+2 y^{2}-4 x y$.

Solution.

First we need to find the critical points. We require that $f_{x}=f_{y}=0$, so we solve

$$
\begin{array}{r}
f_{x}=4 x^{3}-4 y=0 \\
f_{y}=4 y-4 x=0
\end{array}
$$

to get that we have critical points at $(0,0),(-1,-1)$, and $(1,1)$.
Via the second derivative test, we see that $D(0,0)<0$, so $(0,0)$ is a saddle point. Also, $D(-1,-1), D(1,1)>0$ and $f_{x x}(-1,-1), f_{x x}(1,1)>0$, so $(-1,-1)$ and $(1,1)$ are local minima.

Assignment

Worksheet 08:
https://mathpost.asu.edu/~wells/math/teaching/mat272_spring2015/homework08.pdf
As always, you may work in groups, but every member must individually submit a homework assignment.

