Recitation 04: Motion in Space; Length of Curves

Joseph Wells Arizona State University

February 15, 2015

We may often want to think about vector-valued functions as modeling motion in space. Suppose the function $\mathbf{r}(t) = \langle r_1(t), \ldots, r_n(t) \rangle$ represents a particle's *position* in space at time t. Then, just as you probably learned in Calc I or Physics, $\mathbf{v}(t) = \mathbf{r}'(t)$ is the particle's *velocity* and $|\mathbf{v}(t)|$ is the particle's *speed*. Lastly, $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$ is the particle's *acceleration*. **Example.** Given the following position function, determine the velocity, speed, and acceleration of the object. $\mathbf{r}(t) = \langle 8\sin(t), 8\cos(t) \rangle, 0 \le t \le 2\pi$.

Solution.

Knowing how to derive the acceleration function from the position or velocity functions is. From physics, we know that the force vector \mathbf{F} of an object is directly proportional to the mass m of that object and its acceleration vector \mathbf{a} , i.e.

$$\mathbf{F} = m\mathbf{a}(t) = m\mathbf{v}'(t) = m\mathbf{r}''(t).$$

Example. Find the force acting on an object of mass 100 kg with the given position function (units of meters and seconds): $\mathbf{r}(t) = \langle \cos(4t), \sin(5t) \rangle$.

Solution.

With a few derivatives, we get that

$$\mathbf{F} = m\mathbf{a}(t) = m\mathbf{r}'' = 100\langle -16\cos(4t), -25\sin(5t)\rangle.$$

For two-dimensional motion and an object acted upon only by gravity (say, throwing a ball into the air at angle θ from the ground), with an initial position $\langle x_0, y_0 \rangle$ and initial velocity $\mathbf{v}_0 = \langle |\mathbf{v}_0| \cos(\theta), |\mathbf{v}_0| \sin(\theta) \rangle$, we can deduce the following:

time of flight =
$$T = \frac{2|\mathbf{v}_0|\sin(\theta)}{g}$$

range = $\frac{|\mathbf{v}_0|^2\sin(2\theta)}{g}$
maximum height = $y\left(\frac{T}{2}\right) = \frac{(|\mathbf{v}_0|\sin(\theta))^2}{2g}$

٠

Just as you did back in Calc II, we can determine the length of a curve traversing through *n*-dimensional space. Let $\mathbf{r}(t) = \langle r_1(t), \ldots, r_n(t) \rangle$ be such a curve and suppose r'_1, \ldots, r'_n are continuous. Then the arc length of the interval [a, b] is given by

$$L = \int_{a}^{b} |\mathbf{r}'(t)| dt$$

= $\int_{a}^{b} \sqrt{[r'_{1}(t)]^{2} + \dots + [r'_{n}(t)]^{2}} dt.$

If given a polar curve $r = f(\theta)$, then the arc length of the interval $[\alpha, \beta]$ is given by

$$L = \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} \, d\theta$$

Example. Find the length of the following curve: $\mathbf{r}(t) = \left\langle \frac{5}{2}\sin(2t), \frac{13}{2}\cos(2t), \frac{12}{2}\sin(2t) \right\rangle, 0 \le t \le \pi.$

Solution.

Using the arc length formula, we have

$$\begin{split} L &= \int_0^\pi \sqrt{[5\cos(2t)]^2 + [-13\sin(2t)]^2 + [12\cos(2t)]^2} \, dt \\ &= \int_0^\pi \sqrt{169\cos^2(2t) + 169\sin^2(2t)} \, dt \\ &= 13 \int_0^\pi \, dt \\ &= 13\pi. \end{split}$$

Assignment

Worksheet 04:

https://mathpost.asu.edu/~wells/math/teaching/mat272_spring2015/homework04.pdf

As always, you may work in groups, but every member must individually submit a homework assignment.