Recitation 04: Motion in Space; Length of Curves

Joseph Wells
Arizona State University

February 15, 2015

We may often want to think about vector-valued functions as modeling motion in space. Suppose the function $\mathbf{r}(t)=\left\langle r_{1}(t), \ldots, r_{n}(t)\right\rangle$ represents a particle's position in space at time t. Then, just as you probably learned in Calc I or Physics, $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$ is the particle's velocity and $|\mathbf{v}(t)|$ is the particle's speed. Lastly, $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)$ is the particle's acceleration.

Example. Given the following position function, determine the velocity, speed, and acceleration of the object. $\mathbf{r}(t)=\langle 8 \sin (t), 8 \cos (t)\rangle, 0 \leq t \leq 2 \pi$.

Solution.

Knowing how to derive the acceleration function from the position or velocity functions is. From physics, we know that the force vector \mathbf{F} of an object is directly proportional to the mass m of that object and its acceleration vector a, i.e.

$$
\mathbf{F}=m \mathbf{a}(t)=m \mathbf{v}^{\prime}(t)=m \mathbf{r}^{\prime \prime}(t)
$$

Example. Find the force acting on an object of mass 100 kg with the given position function (units of meters and seconds): $\mathbf{r}(t)=\langle\cos (4 t), \sin (5 t)\rangle$.

Solution.

With a few derivatives, we get that

$$
\mathbf{F}=m \mathbf{a}(t)=m \mathbf{r}^{\prime \prime}=100\langle-16 \cos (4 t),-25 \sin (5 t)\rangle
$$

For two-dimensional motion and an object acted upon only by gravity (say, throwing a ball into the air at angle θ from the ground), with an initial position $\left\langle x_{0}, y_{0}\right\rangle$ and initial velocity $\mathbf{v}_{0}=\langle | \mathbf{v}_{0}\left|\cos (\theta),\left|\mathbf{v}_{0}\right| \sin (\theta)\right\rangle$, we can deduce the following:

$$
\begin{aligned}
\text { time of flight } & =T=\frac{2\left|\mathbf{v}_{0}\right| \sin (\theta)}{g} \\
\text { range } & =\frac{\left|\mathbf{v}_{0}\right|^{2} \sin (2 \theta)}{g} \\
\text { maximum height } & =y\left(\frac{T}{2}\right)=\frac{\left(\left|\mathbf{v}_{0}\right| \sin (\theta)\right)^{2}}{2 g} .
\end{aligned}
$$

Just as you did back in Calc II, we can determine the length of a curve traversing through n-dimensional space. Let $\mathbf{r}(t)=\left\langle r_{1}(t), \ldots, r_{n}(t)\right\rangle$ be such a curve and suppose $r_{1}^{\prime}, \ldots, r_{n}^{\prime}$ are continuous. Then the arc length of the interval $[a, b]$ is given by

$$
\begin{aligned}
L & =\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t \\
& =\int_{a}^{b} \sqrt{\left[r_{1}^{\prime}(t)\right]^{2}+\cdots+\left[r_{n}^{\prime}(t)\right]^{2}} d t
\end{aligned}
$$

If given a polar curve $r=f(\theta)$, then the arc length of the interval $[\alpha, \beta]$ is given by

$$
L=\int_{\alpha}^{\beta} \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta
$$

Example. Find the length of the following curve: $\mathbf{r}(t)=\left\langle\frac{5}{2} \sin (2 t), \frac{13}{2} \cos (2 t), \frac{12}{2} \sin (2 t)\right\rangle$, $0 \leq t \leq \pi$.

Solution.
Using the arc length formula, we have

$$
\begin{aligned}
L & =\int_{0}^{\pi} \sqrt{[5 \cos (2 t)]^{2}+[-13 \sin (2 t)]^{2}+[12 \cos (2 t)]^{2}} d t \\
& =\int_{0}^{\pi} \sqrt{169 \cos ^{2}(2 t)+169 \sin ^{2}(2 t)} d t \\
& =13 \int_{0}^{\pi} d t \\
& =13 \pi
\end{aligned}
$$

Assignment

Worksheet 04:
https://mathpost.asu.edu/~wells/math/teaching/mat272_spring2015/homework04.pdf
As always, you may work in groups, but every member must individually submit a homework assignment.

