Recitation 03: Curves and Planes in Space; Calculus of Vector-Valued Functions

Joseph Wells
Arizona State University

February 6, 2015

When we say a function is "[blank]-valued", we mean that the output of the function is [blank]. So "real-valued" functions output real numbers, "integral-valued" functions output integers, and "vector-valued" functions output vectors. So, if given a function

$$
\mathbf{f}(t)=\left\langle f_{1}(t), f_{2}(t), \ldots, f_{n}(t)\right\rangle
$$

we say that $\mathbf{f}(t)$ is a vector-valued function and the functions $f_{i}(t)$ are called the component functions.

The equation of a line passing through the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of the vector $\mathbf{v}=\langle a, b, c\rangle$ is $\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}$, or

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle,
$$

where $-\infty<t<\infty$. Equivalently, the parametric equations for this line are

$$
x=x_{0}+t a \quad y=y_{0}+t b \quad z=z_{0}+t c .
$$

\mathbf{v} above is the direction vector. We say that two lines are parallel if they have the same direction vector. We say that two lines intersect if they are equal for some value of t, and we say that they are skew if they are neither parallel nor intersecting.

Example. Find the equation of the line through $P=(0,4,8)$ and $Q=(10,-5,-4)$.

Solution

To use our formula, we need a vector, so $\overrightarrow{P Q}=\langle 10,-9,-12\rangle$. Our formula then says that the equation of the line is given by

$$
\mathbf{r}=P+t \overrightarrow{P Q}=\langle 0,4,8\rangle+t\langle 10,-9,-12\rangle=\langle 10 t, 4-9 t, 8-12 t\rangle
$$

We can also take limits of vector-valued functions. Suppose $\mathbf{r}(t)=\left\langle r_{1}(t), \ldots, r_{n}(t)\right\rangle$ is a vector-valued function. Then for some fixed real number a,

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow a} r_{1}(t), \ldots, \lim _{t \rightarrow a} r_{n}(t)\right\rangle
$$

Example. Is the following function continuous at $t=1 ? f(t)=\left\langle\frac{1}{t-1}, t-1\right\rangle$.
Recall that a function is continuous at a point if the limit exists at that point and the function at that point agrees with the limit. Since $\lim _{t \rightarrow 1} \frac{1}{t-1}$ does not exist, $f(t)$ is not continuous at $t=1$.

Given a vector-valued function $\mathbf{r}(t)=\left\langle r_{1}(t), \ldots, r_{n}(t)\right\rangle$, the derivative is given by

$$
\mathbf{r}^{\prime}(t)=\frac{d}{d t} \mathbf{r}(t)=\left\langle\frac{d}{d t} r_{1}(t), \ldots, \frac{d}{d t} r_{n}(t)\right\rangle=\left\langle r_{1}^{\prime}(t), \ldots, r_{n}^{\prime}(t)\right\rangle
$$

Provided $r^{\prime}(t) \neq 0$ at the point t, then $r^{\prime}(t)$ is the tangent vector at the point t. The unit tangent vector is then

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

The same derivative rules have natural analogs for vector-valued functions. They are:
constant rule $: \frac{d}{d t}[\mathbf{c}]=0$
sum rule $: \frac{d}{d t}[\mathbf{u}(t)+\mathbf{v}(t)]=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t)$
product rule $: \frac{d}{d t}[f(t) \mathbf{u}(t)]=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t)$
chain rule $: \frac{d}{d t}[\mathbf{u}(f(t))]=\mathbf{u}^{\prime}(f(t)) f^{\prime}(t)$
dot product rule $: \frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)$
cross product rule : $\frac{d}{d t}[\mathbf{u}(t) \times \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)$

Example.

We can also take integrals of vector-valued functions.

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left\langle\int_{a}^{b} r_{1}(t) d t, \ldots, \int_{a}^{b} r_{n}(t) d t\right\rangle
$$

If the integral is indefinite, we still have a $+\mathbf{C}$ at the end, but this time \mathbf{C} is a constant vector.

Example.

Assignment

Worksheet 03:
https://mathpost.asu.edu/~wells/math/teaching/mat272_spring2015/homework03.pdf
As always, you may work in groups, but every member must individually submit a homework assignment.

