Recitation 02: Dot Product and Cross Product

Joseph Wells Arizona State University

January 27, 2015

Given vectors $\mathbf{a} = \langle a_1, \ldots, a_n \rangle$ and $\mathbf{b} = \langle b_1, \ldots, b_n \rangle$, the *dot product* or *(Euclidean) inner product* is given by

$$a \cdot b = a_1 b_1 + \dots + a_n b_n = |a| |b| \cos(\theta),$$

where θ is the angle between the two vectors. The *vector* projection of **a** on **b** is given by

$$\operatorname{proj}_{\mathbf{b}} \mathbf{a} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2}\right) \mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}.$$

and the *vector rejection of* **a** *on* **b** is given by

$$\mathbf{a} - \operatorname{proj}_{\mathbf{b}} \mathbf{a}$$
.

The vector rejection is the vector that represents the shortest path between the head of vector **a** and the vector **b**.

Example. Find the distance between the point R = (5,1) and the line ℓ given by $y = \frac{1}{2}x + 3$.

Let's pick two random points on the line, say P = (0,3)and Q = (2,4). We can then form vectors $\mathbf{u} = \overrightarrow{PR} = \langle 5, -2 \rangle$ and $\mathbf{v} = \overrightarrow{PQ} = \langle 2, 1 \rangle$. To find the distance between R and the line is the same as finding the length of the vector rejection of \mathbf{u} on \mathbf{v} . So

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$$
$$= \left(\frac{8}{5}\right) \langle 2, 1 \rangle,$$

whence

$$|\mathbf{u} - \operatorname{proj}_{\mathbf{v}} \mathbf{u}| = \left| \langle 5, -2 \rangle - \left(\frac{8}{5} \right) \langle 2, 1 \rangle \right| = \frac{9}{\sqrt{5}} \approx 4.025.$$

In physics, work is computed using a force vector, \mathbf{F} , and a distance vector, \mathbf{d} , via

 $W = \mathbf{F} \cdot \mathbf{d} = |\mathbf{F}| |\mathbf{d}| \cos \theta,$

where θ is the angle between the force vector and distance vector. Note that work is a SCALAR, not a vector.

Example. No Example at this time.

Rewriting our vectors as $\mathbf{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\mathbf{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, the cross product is given by

$$a \times b = \det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$

= $(a_2b_3 - a_3b_2)\hat{i} - (a_1b_3 - a_3b_1)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}.$

Note: the cross product ONLY WORKS IN 3 DIMENSIONS.

The length of the cross product vector is given by the usual vector length formula, but can also be given in terms of the angle θ between the vectors by

 $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta.$

In physics, torque is computed using a force vector, \mathbf{F} , and a radius vector, \mathbf{r} , via

$$\tau = \mathbf{r} \times \mathbf{F}.$$

This means that torque is a *VECTOR*.

Cross products also have applications to parallelograms and parallelapipeds. Specifically, for a parallelogram formed by vectors \mathbf{a} and \mathbf{b} , the area of the parallelogram is

$$Area = |\mathbf{a} \times \mathbf{b}|.$$

For a parallelapiped formed by vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} , the volume of the parallelapiped is

$$Vol = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|.$$

Assignment

Worksheet 02:

https://mathpost.asu.edu/~wells/math/teaching/mat272_spring2015/homework02.pdf

As always, you may work in groups, but every member must individually submit a homework assignment.