Recitation 02: Dot Product and Cross Product

Joseph Wells
Arizona State University

January 27, 2015

Given vectors $\mathbf{a}=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, \ldots, b_{n}\right\rangle$, the dot product or (Euclidean) inner product is given by

$$
a \cdot b=a_{1} b_{1}+\cdots+a_{n} b_{n}=|a||b| \cos (\theta)
$$

where θ is the angle between the two vectors. The vector projection of \mathbf{a} on \mathbf{b} is given by

$$
\operatorname{proj}_{\mathbf{b}} \mathbf{a}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^{2}}\right) \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} .
$$

and the vector rejection of \mathbf{a} on \mathbf{b} is given by

$$
\mathbf{a}-\operatorname{proj}_{\mathbf{b}} \mathbf{a}
$$

The vector rejection is the vector that represents the shortest path between the head of vector a and the vector b.

Example. Find the distance between the point $R=(5,1)$ and the line ℓ given by $y=\frac{1}{2} x+3$.

Let's pick two random points on the line, say $P=(0,3)$ and $Q=(2,4)$. We can then form vectors $\mathbf{u}=\overrightarrow{P R}=$ $\langle 5,-2\rangle$ and $\mathbf{v}=\overrightarrow{P Q}=\langle 2,1\rangle$. To find the distance between R and the line is the same as finding the length of the vector rejection of \mathbf{u} on \mathbf{v}. So

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{v}} \mathbf{u} & =\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v} \\
& =\left(\frac{8}{5}\right)\langle 2,1\rangle,
\end{aligned}
$$

whence

$$
\left|\mathbf{u}-\operatorname{proj}_{\mathbf{v}} \mathbf{u}\right|=\left|\langle 5,-2\rangle-\left(\frac{8}{5}\right)\langle 2,1\rangle\right|=\frac{9}{\sqrt{5}} \approx 4.025
$$

In physics, work is computed using a force vector, \mathbf{F}, and a distance vector, \mathbf{d}, via

$$
W=\mathbf{F} \cdot \mathbf{d}=|\mathbf{F} \| \mathbf{d}| \cos \theta
$$

where θ is the angle between the force vector and distance vector. Note that work is a $S C A L A R$, not a vector.

Example. No Example at this time.

Rewriting our vectors as $\mathbf{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\mathbf{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$, the cross product is given by

$$
\begin{aligned}
a \times b & =\operatorname{det}\left(\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right) \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \hat{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \hat{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \hat{k}
\end{aligned}
$$

Note: the cross product ONLY WORKS IN 3 DIMENSIONS.
The length of the cross product vector is given by the usual vector length formula, but can also be given in terms of the angle θ between the vectors by

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta .
$$

In physics, torque is computed using a force vector, \mathbf{F}, and a radius vector, \mathbf{r}, via

$$
\tau=\mathbf{r} \times \mathbf{F}
$$

This means that torque is a $V E C T O R$.
Cross products also have applications to parallelograms and parallelapipeds. Specifically, for a parallelogram formed by vectors \mathbf{a} and \mathbf{b}, the area of the parallelogram is

$$
\text { Area }=|\mathbf{a} \times \mathbf{b}| .
$$

For a parallelapiped formed by vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}, the volume of the parallelapiped is

$$
V o l=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})| .
$$

Assignment

Worksheet 02:
https://mathpost.asu.edu/~wells/math/teaching/mat272_spring2015/homework02.pdf
As always, you may work in groups, but every member must individually submit a homework assignment.

