Name:

$\S 14.1 \quad$ Vector Felds

1. Sketch five vectors in the vector field $\mathbf{F}(x, y)=\frac{\langle 2 y, x\rangle}{\sqrt{x^{2}+y^{2}}}$.
2. Sketch five vectors in the vector field $\mathbf{F}(x, y)=\langle 0,3 y\rangle$.
3. Find the gradient field corresponding to $f(x, y)=5 x^{3}-3 y^{4}$.
4. Find the gradient field corresponding to $f(x, y)=\frac{1}{\sqrt{9 x+5 y}}$.
5. Find the gradient field corresponding to $f(x, y, z)=x^{2} y^{9}+y z^{3}$.

§14.2 Line Integrals

6. Evaluate the line integral $\int_{C} 3 x-y d s$, where C is the quarter circle $x^{2}+y^{2}=9$ from $(0,3)$ to $(3,0)$.
7. Evaluate the line integral $\int_{C} 3 y^{2} d s$, where C is the portion of $y=x^{2}$ from $(2,4)$ to $(0,0)$.
8. Evaluate the line integral $\int_{C} 4(x-z) z d s$, where C is the portion of $y=x^{2}$ in the plane $z=2$ from $(1,1,2)$ to $(2,4,2)$.
9. Compute the work done by the force field $\mathbf{F}=\left\langle z, 0,3 x^{2}\right\rangle$ along the curve C where C is the quarter ellipse $x=2 \cos t, y=3 \sin t, z=1$ from $(2,0,1)$ to $(0,3,1)$.

§14.3 Conservative Vector Fields

10. Determine whether or not the vector field $\mathbf{F}=\left\langle z^{2}+2 x y, x^{2}-z, 2 x z-1\right\rangle$ is conservative. If it is, find a potential functions.
11. Show that $\frac{\mathbf{r}}{|\mathbf{r}|^{n}}=\frac{\langle x, y\rangle}{\left(x^{2}+y^{2}\right)^{n / 2}}$ is conservative for any integer n.
