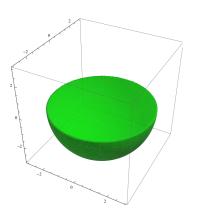
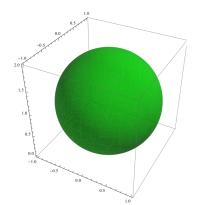
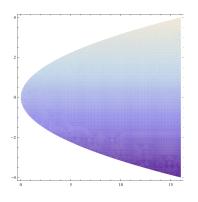

Name:__

§13.5 TRIPLE INTEGRALS IN CYLINDRICAL AND SHERICAL COORDINATES

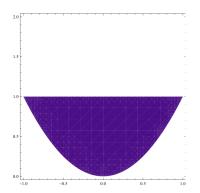

1. Set up the triple integral $\iiint_Q f(x, y, z) dV$ in cylindrical coordinates, where Q is the region above $z = -\sqrt{x^2 + y^2}$ and inside $x^2 + y^2 = 4$.


2. Change the coordinate system and evaluate the iterated integral $\int_0^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_0^{2-x^2-y^2} \sqrt{x^2+y^2} \, dz \, dy \, dx.$

3. Set up and evaluate the triple integral in an appropriate coordinate system: $\iiint_Q \sqrt{x^2 + y^2 + z^2} \, dV$, where Q is bounded by the hemisphere $z = -\sqrt{9 - x^2 - y^2}$ and the xy-plane.



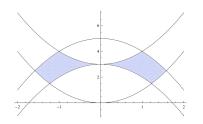
4. Change the coordinate system and evaluate the iterated integral $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{1-\sqrt{1-x^2-y^2}}^{1+\sqrt{1-x^2-y^2}} (x^2 + y^2 + z^2)^{3/2} \, dz \, dy \, dx.$



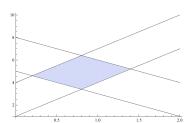
§13.6 IINTEGRALS FOR MASS CALCULATIONS

5. Find the mass and center of mass of the lamina bounded by $x = y^2$ and x = 16 with density $\rho(x, y) = y + 7$.

6. Find the mass and moments of inertia M_x and M_y for a lamina in the shape of the region bounded by $y = x^2$ and y = 1 with density $\rho(x, y) = 5$.

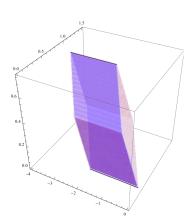


7. Find the mass of the solid in the region bounded by $z = 4 - x^2 - y^2$ and z = 0, with density $\rho(x, y, z) = 5e^{-(x^2+y^2)}$.


8. Find the mass of the solid tetrahedra bounded by x + y + 8z = 8 and the coordinate planes, with density $\rho(x, y, z) = x + 8y$.

§13.7 Change of Variables in Multiple Integrals

9. Find a transformation from a rectangular region S in the *uv*-plane to the region R in the *xy*-plane, where R is bounded by $y = x^2$, $y = x^2 + 3$, $y = 5 - x^2$, and $y = 3 - x^2$.



10. Evaluate the double integral $\iint_R 2x - y \, dA$, where R is bounded by y = 3x + 1, y = 3x + 4, y = -2x + 5, and y = -2x + 8.

11. Find the Jacobian determinant of the given transformation: $T: x = 6u \cos(v), y = 7u \sin(v)$.

12. Find the volume of the solid Q, where Q is bounded by x+3z = -2, x+3z = 0, 3y-5z = -2, 3y-5z = 1, 3y-2z = 1, and 3y-2z = 2.

