Name:

§13.1 Double Integrals Over Rectangular and General Regions

1. Evaluate the double integral $\iint_{R} 4 x e^{2 y} d A$, where $R=\{(x, y) \mid 2 \leq x \leq 4,0 \leq y \leq 1\}$.
2. Sketch the solid whose volume is given by the iterated integral $\iint_{R}\left(4-x^{2}-y^{2}\right) d y d x$, where $R=\{(x, y) \mid-1 \leq x \leq 1,-1 \leq y \leq 1\}$.
3. Evaluate the iterated integral $\iint_{R} \frac{3}{4+y} d x d y$, where R is the region bounded by the functions $x=0, x=y^{2}, y=0$, and $y=1$.
4. Find and evaluate an integral equal to the volume of the solid bounded by the given surfaces: $z=3 x^{2}+2 y, z=0, y=0, y=1, x=1$, and $x=3$.
5. Change the order of integration: $\iint_{R} f(x, y) d x d y$, where R is the region bounded by $x=0$, $x=\ln (y), y=1$, and $y=2$.
6. Evaluate the iterated integral by first changing the order of integration: $\iint_{R} \cos \left(x^{3}\right) d x d y$, where R is the region bounded by $x=\sqrt{y}, x=1, y=0, y=1$.
7. Use a double integral to compute the area bounded by the curves $y=x^{3}$ and $y=x^{2}$.
8. Compute the volume of the solid bounded by the surfaces $z=x^{2}+y^{2}, x=0, x=1, y=0$, $y=1, z=0$.
9. Compute the average value of $f(x, y)=y^{2}$ on the region bounded by $y=x^{2}$ and $y=4$.
10. Let T be the tetrahedron with vertices $(0,0,0),(a, 0,0),(0, b, 0)$, and $(0,0, c)$. Let B be a rectangular box with the same vertices plus $(a, b, 0),(a, 0, c),(0, b, c)$, and (a, b, c). Use integration to find the voume of T (which is one-sixth the volume of B).
