Name:

§12.7 Tangent Planes and Linear Approximation

1. Find equations of the tangent plane and normal line to the surface $z=\frac{4 x}{y}$ at the point $(1,2,2)$.
2. Compute the linear approximation of the function $f(x, y)=\sin (x) \cos (y)$ at the point $(0, \pi)$.
3. Compute the linear approximation of the function $f(w, x, y, z)=\cos (x y z)-w^{3} x^{2}$ at the point $(2,-1,4,0)$.
4. Find the total differential of $f(x, y)=y e^{x}+\sin (x)$.
5. For the given function, show that $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist, but that the function is not differentiable at $(0,0): f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{cases}$
6. Let S be the surface defined parametrically by $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$. Define $\mathbf{r}_{u}(u, v)=\left\langle x_{u}(u, v), y_{u}(u, v), z_{u}(u, v)\right\rangle$ and $\mathbf{r}_{v}(u, v)=\left\langle x_{v}(u, v), y_{v}(u, v), z_{v}(u, v)\right\rangle$. Show that $\mathbf{r}_{u} \times \mathbf{r}_{v}$ is normal to the tangent plane at the point $(x(u, v), y(u, v), z(u, v))$.

§12.8 Maximum/Minimum Problems

7. Locate all critical points and classify them: $f(x, y)=2 x^{2}+y^{3}-x^{2} y-3 y$.
8. Find the absolute extrema of the function $f(x, y)=x^{2}+y^{2}-4 x y$ on the region bounded by $y=x, y=-3$, and $x=3$.
9. Find the absolute extrema of the function $f(x, y)=x^{2}+y^{2}-2 x-4 y$ on the region bounded by $y=x, y=3$, and $x=0$.
10. Find the maximum of $z=x^{2}+y^{2}$ on the square with $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$.
11. Find the closest point on the cone $z=x^{2}+y^{2}$ to the point $(2,-3,0)$.
12. The Hardy-Weinberg law of genetics describes the relationship between the proportions of different genes in populations. Suppose that a certain gene has three types (e.g. blood types of A, B, and $O)$. If the three types of proportions p, q, and r, respectively, in the population, then the Hardy-Weinberg law states that the proportion of people who carry two different types of genes equals $f(p, q, r)=2 p q+2 p r+2 q r$ where $p+q+r=1$. Show that the maximum value of $f(p, q, r)$ is $\frac{2}{3}$.
