Name:

§12.4 Partial Derivatives

1. Find all first-order partial derivatives of $f(x, y, z)=\frac{2}{\sqrt{x^{2}+y^{2}+z^{2}}}$
2. Find the partial derivatives $f_{x x}, f_{y y}$, and $f_{x y}$ of the function $f(x, y, z)=x^{2} y-4 x+3 \sin (y)$.
3. Find all points at which $f_{x}=f_{y}=0$ for the function $f(x, y)=e^{-x^{2}-y^{2}}$ and interpret the significance of the points graphically.
4. For any positive integer n and constant c, show that the functions $f_{n}(x, t)=\sin (n \pi x) \cos (c n \pi t)$ satisfy the wave equation: $c^{2} f_{x x}=f_{t t}$.
5. The Ideal Gas Law relating pressure (P), temperature (T), and volume (V) is $P=\frac{c T}{V}$ for some constant c. Show that $T P_{T} V_{T}=c$.
6. Suppose that L hours of labor and K dollars of investment by a company result in a productivity of $P=L^{0.75} K^{0.25}$. Compute the marginal producitivity of labor P_{L}, and the marginal productivity of capital P_{K}.

$\S 12.5$ The Chain Rule

7. Use the chain rule to find f_{u} and f_{v} for $f(x, y)=x y^{3}-4 x^{2}$, where $x(u, v)=e^{u^{2}}$ and $y(u, v)=$ $\sin (u) \sqrt{v^{2}+1}$.
8. State the chain rule for the general composite function $g(u, v)=f(x(u, v), y(u, v), z(u, v))$.
9. Suppose the production of a firm is modeled by $P(k, \ell)=16 k^{1 / 3} \ell^{2 / 3}$, where K measures capital (in millions of dollars) and ℓ measures the labor force (in thousands of workers). Suppose that $\ell=2$ and $k=5$, the labor force is increasing at the rate of 40 workers per year, and capital is decreasing at the rate of $\$ 100,000$ per year. Determine the rate of change of production.
10. Use the chain rule twice to find $g^{\prime \prime}(t)$, where $g(t)=f(x(t), y(t), z(t))$.
11. Use implicit differentiation to find z_{x} and z_{y}, where $3 y z^{2}-e^{4 x} \cos (4 z)-3 y^{2}=4$.
12. Write out the third-order Taylor polynomial for $f(x, y)=\sin (x y)$ about $(0,0)$.

§12.6 Directional Derivatives and the Gradient

13. Find the gradient of $f(x, y)=3 \sin (3 x y)+y^{2}$ at $(\pi, 1)$.
14. Compute the directional derivative of $f(x, y)=e^{4 x^{2}-y}$ at the point $(1,4)$ in the direction of the vector $\langle-2,-1\rangle$.
15. Find the directions of maximum and minimum change of f at the given point, and the values of the maximum and minimum rates of change: $f(x, y)=x^{2}-y^{2}$ at $(-2,-1)$.
16. Find equations of the tangent plane and normal line to the surface $f(x, y)=\sqrt{x^{2}+y^{2}}$ at $(3,-4,5)$.
17. Find all points at which the tangent plane to the surface $z=\sin (x) \cos (y)$ is parallel to the $x y$-plane.
18. If the temperature at the point (x, y, z) is given by $T(x, y, z)=80+5 e^{-z}\left(x^{-2}+y^{-1}\right)$, find the direction from the point $(1,4,8)$ in which the temperature decreases most rapidly.
