Name:

§11.9 Curvature and Normal Vectors

1. Find the unit tangent vector to the curve at the indicated points: $\mathbf{r}(t)=\langle 3 t, \cos (2 t), \sin (2 t)\rangle$, at $t=0, t=-\pi, t=\pi$.
2. Find the curvature of the given curve at the given point: $\mathbf{r}(t)=\langle 2, \sin (\pi t), \ln (t)\rangle$ at $t=1$.
3. Find any points of maximum or minimum curvature: $\mathbf{r}(t)=\langle 2 \cos (t), 3 \sin (t)\rangle$.
4. Find the curvature of the circular helix: $\mathbf{r}(t)=\langle a \cos (t), a \sin (t), b t\rangle$ (here, a and b are arbitrary constants).
5. Find the curvature of the polar curve at the indicated points: $r=\sin (3 \theta)$, at $\theta=0$ and $\theta=\frac{\pi}{6}$
6. For the logarithmic spiral $r=a e^{b \theta}$, show that the curvature equals $\kappa=\frac{e^{-b \theta}}{a \sqrt{1+b^{2}}}$. Show that as $b \rightarrow 0$, the spiral approaches a circle.

§12.1 Planes and Surfaces

7. Find the distance between the point $(1,3,0)$ and the plane $3 x+y-5 z=2$.
8. Suppose that $\langle 2,1,3\rangle$ is a normal vector for a plane containing the point $(2,-3,4)$. Show that an equation of the plane is $2 x+y+3 z=13$. Explain why another normal vector for this plane is $\langle-4,-2,-6\rangle$. Use this normal vector to find an equation of the plane and show that the equation reduces to the same equation, $2 x+y+3 z=13$.
9. Find an equation of the plane containing the lines
$\ell_{1}=\left\{\begin{array}{l}x=1-t \\ y=2+3 t \\ z=2 t\end{array} \quad\right.$ and $\quad \ell_{2}=\left\{\begin{array}{l}x=1-s \\ y=5 \\ z=4-2 s\end{array}\right.$.

For problems 4-6, sketch the appropriate traces, and then identify the surface:
10. $9 x^{2}+y^{2}+9 z^{2}=9$
11. $9 x^{2}+z^{2}=9$
12. $x+y^{2}+z^{2}=2$

