Name:

§11.3 Dot Products

1. You exert a constant force of 401 l in the direction of the handle of the wagon pictured in the figure. If the handle makes an angle of $\frac{\pi}{4}$ with the horizontal and you pull the wagon along a flat surface for $1 \mathrm{mi}(5280 \mathrm{ft})$, find the work done.

2. A constant force of $\langle 60,-30\rangle \mathrm{lb}$ moves an object in a straight line from the point $(0,0)$ to the point $(10,-10)$. Compute the work done.
3. Parametric equations for one object are $x_{1}=a \cos t$ and $y_{1}=b \sin t$. The object travels along the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. The parametric equations for a second object are $x_{2}=a \cos \left(t+\frac{\pi}{2}\right)$ and $y_{2}=b \sin \left(t+\frac{\pi}{2}\right)$. This object travels along the same ellipse but is $\frac{\pi}{2}$ time units ahead. If $a=b$, use the trigonometric identity $\cos (u) \cos (v)+\sin (u) \sin (v)=\cos (u-v)$ to show that the position vectors of the two objects are orthogonal. Show also that if $a \neq b$, the position vectors are not orthogonal.
4. Show that the object with parametric equations $x_{3}=b \cos \left(t+\frac{\pi}{2}\right)$ and $y_{3}=a \sin \left(t+\frac{\pi}{2}\right)$ has position vector that is orthogonal to the first object of Exercise 3.
5. In the diagram, a crate of weight $w \mathrm{lb}$ is placed on a ramp inclined at angle θ above the horizontal. The vector \mathbf{v} along the ramp is given by $\mathbf{v}=\langle\cos \theta, \sin \theta\rangle$ and the normal vector by $\mathbf{n}=\langle-\sin \theta, \cos \theta\rangle$. Show that \mathbf{v} and \mathbf{n} are perpendicular. Find the componend of $\mathbf{w}=\langle 0,-w\rangle$ along \mathbf{v} and the component of \mathbf{w} along \mathbf{n}.

6. A weight of $500, \mathrm{lb}$ is supported by two ropes that exert forces of $\mathbf{a}=\langle-100,200\rangle \mathrm{lb}$ and $\mathbf{b}=\langle 100,300\rangle \mathrm{lb}$. Find the angle θ between the ropes.

§11.4 Cross Products

7. Find the distance from the point $Q=(1,3,1)$ to the line through $(1,3,-2)$ and $(1,0,-2)$.
8. If you apply a force of magnitude 40 lb at the end of an 18 in -long wrench at an angle of $\frac{\pi}{3}$ to the wrench, find the magnitude of the torque applied to the bolt.
9. Find the area of the parallelogram with two adjacent sides formed by $\langle-2,1\rangle$ and $\langle 1,-3\rangle$.
10. Find the area of the triangle with vertices $(0,0,0),(0,-2,1)$, and $(1,-3,0)$.
11. Find the volume of the parallelepiped with three adjacent edges formed by $\langle 0,-1,0\rangle,\langle 0,2,-1\rangle$, and $\langle 1,0,2\rangle$.
12. Use the parallelepiped volume formula to determine whether the vectors are coplanar: $\langle 2,3,1\rangle$, $\langle 1,0,2\rangle$, and $\langle 0,3,-3\rangle$.
