Recitation 14: Parametric Equations

Joseph Wells
Arizona State University

April 21, 2014

Example (Book §10.1, \# 11 and \# 12).
a. Eliminate the Parameter to obtain an equation in x and y.
b. Describe the curve and indicate the positive orientation
11. $x=\sqrt{t}+4, y=3 \sqrt{t} ; 0 \leq t \leq 16$.
12. $x=(t+1)^{2}, y=t+2 ;-10 \leq 10 \leq 10$
11. Let $\sqrt{t}=\frac{y}{3}$. Then

$$
\begin{aligned}
x & =\sqrt{t}+4=\frac{y}{3}+4 \\
\Rightarrow y & =3 x-4 .
\end{aligned}
$$

This is just a line.
12. Let $y-1=t+1$. Then

$$
\begin{aligned}
x & =(t+1)^{2} \\
& =(y-1)^{2}
\end{aligned}
$$

This is just a (horizontal) parabola.

Taking a derivative is easy in parametric equations too. Notice that $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$.
Example (Book §10.1, \#47).
a. Determine $\frac{d y}{d x}$ in terms of t and evaluate it at the given value of t.
b. Make a sketch of the curve showing the tangent line at the point corresponding to the given value of t.
$x=\cos (t), y=8 \sin (t), t=\frac{\pi}{2}$.

By our previous equation

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{8 \cos (t)}{-\sin (t)}
$$

so

$$
\left.\frac{d y}{d x}\right|_{t=\pi / 2}=\frac{8 \cos \left(\frac{\pi}{2}\right)}{-\sin \left(\frac{\pi}{2}\right)}=0
$$

Theorem. If a smooth curve C is given by $x=f(t)$ and $t=g(t)$ such that C does not intersect itself on the interval $a \leq t \leq b$ (except possibly at the endpoints), then the arc length of C over the interval is given by

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2}} d t=\int_{a}^{b} \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t
$$

Example. Suppose we want to find the length of the curve C from $t=0$ to $t=\frac{\pi}{2}$: $x=5 \cos (t)-\cos (5 t), y=5 \sin (t)-\sin (5 t)$.

$$
\begin{aligned}
s & =\int_{0}^{\pi / 2} \sqrt{\left[\frac{d x}{d t}\right]^{2}+\left[\frac{d y}{d t}\right]^{2}} d t \\
& =\int_{0}^{\pi / 2} \sqrt{[-5 \sin (t)+5 \sin (5 t)]^{2}+[5 \cos (t)-5 \cos (5 t)]^{2}} d t \\
& =\int_{0}^{\pi / 2} \sqrt{[5(-\sin (t)+\sin (5 t))]^{2}+[5(\cos (t)-\cos (5 t))]^{2}} d t \\
& =5 \int_{0}^{\pi / 2} \sqrt{[-\sin (t)+\sin (5 t)]^{2}+[\cos (t)-\cos (5 t)]^{2}} d t \\
& =5 \int_{0}^{\pi / 2} \sqrt{2-2 \sin (t) \sin (5 t)-2 \cos (t) \cos (5 t)} d t \\
& =5 \int_{0}^{\pi / 2} \sqrt{2-2 \cos (4 t)} d t
\end{aligned}
$$

$$
\begin{aligned}
& =5 \int_{0}^{\pi / 2} \sqrt{4 \sin ^{2}(2 t)} d t \\
& =10 \int_{0}^{\pi / 2} \sin (2 t) d t \\
& =-5[\cos (2 t)]_{0}^{\pi / 2}=10 .
\end{aligned}
$$

Theorem. If a smooth curve C given by $x=f(t)$ and $y=g(t)$ does not cross itself on an interval $a \leq t \leq b$, then the area S of the surface of revolution formed by revolving C about the coordinate axes is given by the following

$$
\begin{aligned}
& S=2 \pi \int_{a}^{b} g(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& S=2 \pi \int_{a}^{b} f(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
\end{aligned}
$$

Example. Let C be the arc of the circle $x^{2}+y^{2}=9$ from $(3,0)$ to $\left(\frac{3}{2}, \frac{3 \sqrt{3}}{2}\right)$. Find the area of the surface formed by revolving C about the x-axis.

Note that we can represent C parametrically by the equations $x=3 \cos (t), y=3 \sin (t)$, $0 \leq t \leq \frac{\pi}{3}$. Then

$$
\begin{aligned}
S & =2 \pi \int_{0}^{\pi / 3} 3 \sin (t) \sqrt{[-3 \sin (t)]^{2}+[3 \cos (t)]^{2}} d t \\
& =6 \pi \int_{0}^{\pi / 3} \sin (t) \sqrt{9\left[\sin ^{2}(t)+\cos ^{2}(t)\right]} d t \\
& =6 \pi \int_{0}^{\pi / 3} \sin (t) d t \\
& =-18 \pi[\cos (t)]_{0}^{\pi / 3} \\
& =9 \pi
\end{aligned}
$$

Assignment

Due (Wed) April 30 / (Fri) May 2

Recitation Notebook:
§9.3-\# 2
§9.4-\# 2
§10.2-\# 2
§10.3-\# 3
§10.4-\# 4

As always, you may work in groups, but every member must individually submit a homework assignment.

