Recitation 12: Alternating \& Power Series

Joseph Wells
Arizona State University

March 31, 2014

Theorem (Alternating Series Test). The alternating series $\sum(-1)^{k+1} a_{k}$ converges if

- $a_{k} \geq a_{k+1}>0$ for all $k>N$, where N is sufficiently large, and
- $\lim _{k \rightarrow \infty} a_{k}=0$.

Definition. Given a series $\sum a_{n}$, we say that $\sum a_{n}$ converges absolutely if $\sum\left|a_{n}\right|$ converges. We say that it converges conditionally if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ does not.
Example (Rec Ntbk §8.6, \#1b). $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k^{2}+10}$
Let $a_{k}=\frac{1}{k^{2}+10}$. Then we have that, $a_{k} \geq a_{k+1}>0$ and $\lim _{k \infty} a_{k}=0$, so it converges by the Alternating Series Test

Definition. A power series can effectively be thought of as an "infinite polynomial", and is of the form $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$, where a is a constant called the center of the series.
Definition. A Taylor series is a power series whose coefficients are $c_{k}=\frac{f^{(k)}(a)}{k!}$. A Taylor polynomial is just some finite portion of a Taylor series (that is $k=0, \ldots, n$).

Example (Rec Ntbk §9.1, \#1).
a. Find the $n^{\text {th }}$ order Taylor polynomial for $f(x)=e^{-x}$ centered at 0 for $n=0,1,2$.
b. Graph the Taylor polynomials and the function.
a.

$$
\begin{aligned}
p_{0}(x) & =\frac{f(0)}{0!} \\
& =1 \\
p_{1}(x) & =\frac{f(0)}{0!}+\frac{f^{\prime}(0)}{1!}(x-0)^{1} \\
& =1-x \\
p_{2}(x) & =\frac{f(0)}{0!}+\frac{f^{\prime}(0)}{1!}(x-0)^{1}+\frac{f^{\prime}(0)}{2!}(x-0)^{2} \\
& =1-x+\frac{1}{2} x
\end{aligned}
$$

b.

Example (Book §9.1, \#33).
a. Approximate $e^{0.12}$ using the $n^{\text {th }}$ Taylor polynomail with $n=3$.
b. Compute the absolute error in approximation assuming the exact value is given by a calculator.

Solution.
a. Since 0.12 is close to 0 , we choose to center this Taylor series at 0 . Then $p_{3}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}$, so $p_{3}(.12) \approx 1.127488$.
b. $e^{0.12}-p_{3}(0.12) \approx 1.127496852-1.127488=8.852 \times 10^{-6}$

Definition. Given a power series $\sum c_{k}(x-a)^{k}$, the interval of convergence is the set of all x such that the series converges. The radius of convergence is the distance from the center of the series to the boundary of the interval of convergence.
Example (Rec Ntbk $\S 9.2, \# 2$). Determine the radius of convergence of $\sum\left(-\frac{x}{10}\right)^{2 k}$. Then test the endpoints to determine the interval of convergence.

$$
\sum\left(-\frac{x}{10}\right)^{2 k}=\sum\left(\frac{x^{2}}{100}\right)^{k}
$$

So by the Root test,

$$
\lim _{k \rightarrow \infty} \sqrt[k]{\left(\frac{x^{2}}{100}\right)^{k}}=\lim _{k \rightarrow \infty} \frac{x^{2}}{100}=\frac{x^{2}}{100}
$$

So this converges whenever $|x|<10$. Thus, the radius of convergence is 10 and since the series is centered at 0 , the interval of convergence is $(-10,10)$.

Example (Book $\S 9.2, \# 33$). Find the power series representation for $g(x)=\frac{1}{(1-x)^{2}}$ centered at 0 by differentiating or integrating the power series for $f(x)=\frac{1}{1-x}$ (perhaps more than once). Given the interval of convergence for the resulting series.

The power series for $f(x)$ is $\sum_{k=0}^{\infty} x^{k}$, which is convergent for $x \in(-1,1)$. So the power series for $g(x)=f^{\prime}(x)$ is $\sum_{k=1}^{\infty} k x^{k-1}=\sum_{k=0}^{\infty}(k+1) x^{k}$, which is also convergent for $x \in$ $(-1,1)$. So the interval of convergence is $(-1,1)$.

Assignment

Recitation Notebook:

§8.6-\#2, \#6
§9.1-\#2, \#3
§9.2-\#1, \#4

As always, you may work in groups, but every member must individually submit a homework assignment.

