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Recall

Definition. A series is a limit of sums of terms by, and is given by Z b = hm Z by,
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Definition. A geometric series is a series of the form Z ar® (where 7 is called the ratio).
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If the upper limit of the summation is finite, we have that Z art = . If we take
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the limit as n — oo, we get Zar lim Zar What conditions do we need to
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determine whether or not this limit converges‘7 | | < 1.

Definition. A telescoping series is a series that has only finitely many terms after can-
cellation.
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Example (Book §8.3, #7). Evaluate the following geometric sum: Z 3k
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Example (Book §8.3, #11). Evaluate the following geometric sum: E (_Z>
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Example (Book §8.3, #19). Evaluate the geometric series, or state that it diverges:
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Example (Book §8.3, #29). Evaluate the geometric series, or state that it diverges:
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Example (Book §8.3, #47). Find a formula for the n-th term of the sequence of partial
sums {S,}. Then evaluate lim,_,, S, to obtain the value of the series or state that the

series diverges: Z (— — _)
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Example (Book §8.3, #51). Find a formula for the n-th term of the sequence of partial

sums {S,}. Then evaluate lim,_,, S, to obtain the value of the series or state that the

k+1
series diverges: Z In (%)
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Notice that, In (5) = In(k + 1) — In(k), so

S1=1n(2) —In(1)
Sy =1n(2) —In(1) +In(3) — In(2) = In(3) — In(1)

Sn.: In(n+1) —In(1) = In(n + 1).

Then lim S,, = lim In(n + 1), which diverges.
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Example (Book §8.3, #53). Find a formula for the n-th term of the sequence of partial
sums {S,}. Then evaluate lim,_,, S, to obtain the value of the series or state that the
1
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series diverges: E ( , where p is a positive integer.
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By partial fractions, ( L L L
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Then lim S, = lim = .
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Assignment

Recitation Notebook:
§83 - #17 #27 #37 #47 #5

As always, you may work in groups, but every member must individually submit a
homework assignment.



