Recitation 09: Sequences and Series

Joseph Wells
Arizona State University

March 17, 2014

Example (Rec Notebk: $\S 8.1, \# 5)$. Limits from Graphs Consider the following sequence: $a_{n}=\frac{n^{2}}{n^{2}-1} ; n=2,3,4$.
a. Find the first four terms of the sequence.
b. Based on part (a) and the figure, determine a plausible limit of the sequence.
a. $\frac{4}{3}, \frac{9}{8}, \frac{16}{15}, \frac{25}{24}$
b. It looks like it is approaching 1, and in fact, it is.

Example (Rec Notebk: §8.1, \#6). Repeating decimals

a. Write the following repeating decimal as an infinite series: $0 . \overline{027}=0.027027027 \ldots$
b. Find the limit of the sequence of partial sums for the infinite series and express it as a fraction.
a. $0 . \overline{027}=\sum_{k=1}^{\infty} 27(0.001)^{k}$.
b. We can rewrite the series as

$$
\begin{aligned}
\sum_{k=1}^{\infty} 27(0.001)^{k} & =-27+\sum_{k=0}^{\infty} 27(0.001)^{k} \\
& =-27+\sum_{k=0}^{\infty} 27\left(\frac{1}{1000}\right)^{k} \\
& =-27+\frac{27}{1-\frac{1}{1000}} \\
& =\frac{27}{999}=\frac{1}{37}
\end{aligned}
$$

Example (Rec Notebk: §8.2, \#3). Geometric sequences Determine whether the following sequences converge or diverge and describe whether they do so monotonically or by oscillation. Give the limit when the sequence converges.
a. $\left\{(-1.01)^{n}\right\}_{n \in \mathbb{Z}^{+}}$
b. $\left\{2^{n} 3^{-n}\right\}_{n \in \mathbb{Z}^{+}}$
a. $\left\{(-1.01)^{n}\right\}$ diverges since $|-1.01|>1$. Since it is negative, it oscillates.
b. $\left\{2^{n} 3^{-n}\right\}=\left\{\left(2 \cdot 3^{-1}\right)^{n}\right\}=\left\{(2 / 3)^{n}\right\}$ converges since $|2 / 3|<1$. Since it is positive, it does so monotonically. The limit is 0 .

Example (Book: $\S 8.2, \# 18)$. Determine the limit of the following sequence, or state that it diverges: $\left\{\frac{\ln (1 / n)}{n}\right\}_{n \in \mathbb{Z}^{+}}$

By L'Hopital's rule,

$$
\lim _{n \rightarrow \infty} \frac{\ln (1 / n)}{n} \stackrel{L^{\prime} H}{=} \lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

Theorem (8.6). The following sequences are ordered according to the increasing growth rates as $n \rightarrow \infty$. For all positive real numbers p, q, r, s and $b>1$,

$$
\left\{\ln ^{q} n\right\} \ll\left\{n^{p}\right\} \ll\left\{n^{p} \ln ^{r} n\right\} \ll\left\{n^{p+s}\right\} \ll\left\{b^{n}\right\} \ll\{n!\} \ll\left\{n^{n}\right\} .
$$

Example (Rec Notebk: $\S 8.2, \# 4$). Comparing growth rates of sequences Determine which sequence has the greater growth rate as $n \rightarrow \infty$. Be sure to justify and explain your work: $a_{n}=3^{n} ; b_{n}=n$!.

Following from Theorem $8.6, n!\gg 3^{n}$ since $n!\gg b^{n}$ for every $b>1$.

Assignment

Recitation Notebook:

§8.1-\#1, \#2, \#3, \#4
§8.2-\#1, \#2
As always, you may work in groups, but every member must individually submit a homework assignment.

