Recitation 07: Area Between Curves & Volumes of Revolution, Pt I

Joseph Wells Arizona State University

February 24, 2014

Revolutions about the *x*-axis:

Disk Method	$V = \int_{a}^{b} \pi f(x)^{2} dx$
Washer Method	$V = \int_{a}^{b} \pi \left[f(x)^{2} - g(x)^{2} \right] dx$

Revolutions about the *y*-axis:

Disk Method	$V = \int_{a}^{b} \pi f(y)^{2} dy$
Washer Method	$V = \int_a^b \pi \left[f(y)^2 - g(y)^2 \right] dy$

Example (Rec Notebk: §6.2, # 2). Region between curves Sketch the region and find its area. The region bounded by $y = \sin(x)$ and $y = x(x - \pi)$ for $0 \le x \le \pi$.

$$A = \int_0^{\pi} [\sin(x) - x(x - \pi)] dx$$

= $\int_0^{\pi} [\sin(x) - x^2 + \pi x] dx$
= $\left[-\cos(x) - \frac{x^3}{3} + \frac{\pi x^2}{2} \right]_0^{\pi}$
= $2 + \frac{\pi^3}{6}$

Example (Rec Notebk: §6.2, # 3). Region between curves Sketch the region and find its area. The region bounded by y = 5/4 and $y = \frac{1}{\sqrt{1-x^2}}$.

$$A = \int_{-3/5}^{3/5} \left[\frac{5}{4} - \frac{1}{\sqrt{1 - x^2}} \right] dx$$

= $2 \int_{0}^{3/5} \left[\frac{5}{4} - \frac{1}{\sqrt{1 - x^2}} \right] dx$
= $2 \left[\frac{5x}{4} - \arcsin(x) \right]_{0}^{3/5}$
= $\frac{3}{2} - 2 \arcsin\left(\frac{3}{5}\right).$

Example (Rec Notebk: §6.3, # 2). **Disk method** Let *R* be the region bounded by the following curves. Use the disk method to find the volume of the solid generated when *R* is revolved around the *x*-axis. $y = \cos(x)$, y = 0, x = 0 (Recall that $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$.)

$$V = \int_0^{\pi/2} \pi \cos^2(x) \, dx$$

= $\int_0^{\pi/2} \frac{\pi (1 + \cos(2x))}{2} \, dx$
= $\left[\frac{\pi x}{2} + \frac{\pi \sin(2x)}{4}\right]_0^{\pi/2}$
= $\frac{\pi^2}{4}$.

Example (Rec Notebk: §6.3, # 4). Washer method Let R be the region bounded by the following curves. Use the washer method to find the volume of the solid generated when R is revolved around the x-axis. $y = |x|, y = 12 - x^2$.

Notice the area is symmetric about the y-axis, so we can consider only the right half and double it.

$$V = \int_{-3}^{3} \pi \left[(12 - x^2)^2 - x^2 \right] dx$$

= $2\pi \int_{0}^{3} \left[(12 - x^2)^2 - x^2 \right] dx$
= $2\pi \int_{0}^{3} \left[x^4 - 25x^2 + 144 \right] dx$
= $2\pi \left[\frac{x^5}{5} - \frac{25x^3}{3} + 144x \right]_{0}^{3}$
= $\frac{2556\pi}{5}$.

Example (Rec Notebk: §6.3, # 6). Solids of Revolution Find the volume of the solid of revolution. Sketch the region in question. The region bounded by $y = e^{-x}$, $y = e^x$, x = 0, and $x = \ln(4)$ revolved about the x-axis.

$$V = \int_{0}^{\ln(4)} \pi \left[(e^{x})^{2} - (e^{-x})^{2} \right] dx$$

= $\int_{0}^{\ln(4)} \pi \left[e^{2x} - e^{-2x} \right] dx$
= $\int_{0}^{\ln(4)} \pi \left[e^{2x} - e^{-2x} \right] dx$
= $\left[\frac{\pi e^{2x}}{2} - \frac{\pi e^{-2x}}{2} \right]_{0}^{\ln(4)}$
= $\frac{225\pi}{32}.$

Assignment

Recitation Notebook: §6.2 - #1, #5 §6.3 - #1, #3, #5

As always, you may work in groups, but every member must individually submit a homework assignment.