Recitation 07: Area Between Curves \& Volumes of Revolution, Pt I

Joseph Wells
Arizona State University

February 24, 2014

Revolutions about the x-axis:

Disk Method	$V=\int_{a}^{b} \pi f(x)^{2} d x$
Washer Method	$V=\int_{a}^{b} \pi\left[f(x)^{2}-g(x)^{2}\right] d x$

Revolutions about the y-axis:

Disk Method	$V=\int_{a}^{b} \pi f(y)^{2} d y$
Washer Method	$V=\int_{a}^{b} \pi\left[f(y)^{2}-g(y)^{2}\right] d y$

Example (Rec Notebk: §6.2, \# 2). Region between curves Sketch the region and find its area. The region bounded by $y=\sin (x)$ and $y=x(x-\pi)$ for $0 \leq x \leq \pi$.

$$
\begin{aligned}
A & =\int_{0}^{\pi}[\sin (x)-x(x-\pi)] d x \\
& \left.=\int_{0}^{\pi}\left[\sin (x)-x^{2}+\pi x\right)\right] d x \\
& =\left[-\cos (x)-\frac{x^{3}}{3}+\frac{\pi x^{2}}{2}\right]_{0}^{\pi} \\
& =2+\frac{\pi^{3}}{6}
\end{aligned}
$$

Example (Rec Notebk: §6.2, \# 3). Region between curves Sketch the region and find its area. The region bounded by $y=5 / 4$ and $y=\frac{1}{\sqrt{1-x^{2}}}$.

$$
\begin{aligned}
A & =\int_{-3 / 5}^{3 / 5}\left[\frac{5}{4}-\frac{1}{\sqrt{1-x^{2}}}\right] d x \\
& =2 \int_{0}^{3 / 5}\left[\frac{5}{4}-\frac{1}{\sqrt{1-x^{2}}}\right] d x \\
& =2\left[\frac{5 x}{4}-\arcsin (x)\right]_{0}^{3 / 5} \\
& =\frac{3}{2}-2 \arcsin \left(\frac{3}{5}\right)
\end{aligned}
$$

Example (Rec Notebk: $\S 6.3$, \# 2). Disk method Let R be the region bounded by the following curves. Use the disk method to find the volume of the solid generated when R is revolved around the x-axis. $y=\cos (x), y=0, x=0$ (Recall that $\cos ^{2}(x)=$ $\frac{1}{2}(1+\cos (2 x))$.)

$$
\begin{aligned}
V & =\int_{0}^{\pi / 2} \pi \cos ^{2}(x) d x \\
& =\int_{0}^{\pi / 2} \frac{\pi(1+\cos (2 x))}{2} d x \\
& =\left[\frac{\pi x}{2}+\frac{\pi \sin (2 x)}{4}\right]_{0}^{\pi / 2} \\
& =\frac{\pi^{2}}{4}
\end{aligned}
$$

Example (Rec Notebk: $\S 6.3, \# 4)$. Washer method Let R be the region bounded by the following curves. Use the washer method to find the volume of the solid generated when R is revolved around the x-axis. $y=|x|, y=12-x^{2}$.

Notice the area is symmetric about the y-axis, so we can consider only the right half and double it.

$$
\begin{aligned}
V & =\int_{-3}^{3} \pi\left[\left(12-x^{2}\right)^{2}-x^{2}\right] d x \\
& =2 \pi \int_{0}^{3}\left[\left(12-x^{2}\right)^{2}-x^{2}\right] d x \\
& =2 \pi \int_{0}^{3}\left[x^{4}-25 x^{2}+144\right] d x \\
& =2 \pi\left[\frac{x^{5}}{5}-\frac{25 x^{3}}{3}+144 x\right]_{0}^{3} \\
& =\frac{2556 \pi}{5}
\end{aligned}
$$

Example (Rec Notebk: $\S 6.3, \# 6)$. Solids of Revolution Find the volume of the solid of revolution. Sketch the region in question. The region bounded by $y=e^{-x}, y=e^{x}$, $x=0$, and $x=\ln (4)$ revolved about the x-axis.

$$
\begin{aligned}
V & =\int_{0}^{\ln (4)} \pi\left[\left(e^{x}\right)^{2}-\left(e^{-x}\right)^{2}\right] d x \\
& =\int_{0}^{\ln (4)} \pi\left[e^{2 x}-e^{-2 x}\right] d x \\
& =\int_{0}^{\ln (4)} \pi\left[e^{2 x}-e^{-2 x}\right] d x \\
& =\left[\frac{\pi e^{2 x}}{2}-\frac{\pi e^{-2 x}}{2}\right]_{0}^{\ln (4)} \\
& =\frac{225 \pi}{32} .
\end{aligned}
$$

Assignment

Recitation Notebook:
§6.2-\#1, \#5
$\S 6.3-\# 1, \# 3, \# 5$
As always, you may work in groups, but every member must individually submit a homework assignment.

