# Recitation 04: Recap Trig Subs \& Partial Fractions 

Joseph Wells<br>Arizona State University

3 February 2014

QUIZ TIME! It's been a week, let's see if you can remember how to do this
Example. Find $\int \frac{d x}{\left(x^{2}+1\right)^{3 / 2}}$.
Solution.
Begin by rewriting the integral to involve a square root. Then use the substitution $x=\tan (\theta)$ and $d x=\sec ^{2}(\theta) d \theta$.

$$
\begin{aligned}
\int \frac{d x}{\left(x^{2}+1\right)^{3 / 2}} & =\int \frac{d x}{\left(\sqrt{x^{2}+1}\right)^{3}} \\
& =\int \frac{\sec ^{2}(\theta)}{\left(\sqrt{\tan ^{2}(\theta)+1}\right)^{3}} d \theta \\
& =\int \frac{d \theta}{\sec (\theta)} \\
& =\int \cos (\theta) d \theta \\
& =\sin (\theta)+C
\end{aligned}
$$

and our reference triangle is


Thus, in terms of $x$, our integral becomes

$$
\int \frac{d x}{\left(x^{2}+1\right)^{3 / 2}}=\frac{x}{\sqrt{x^{2}+1}}+C .
$$

Example. Preform partial fraction decomposition for $\frac{8 x^{3}+13 x}{\left(x^{2}+2\right)^{2}}$
Solution.
Since we have repeating factors and irreducible quadratics, we get

$$
\frac{8 x^{3}+13 x}{\left(x^{2}+2\right)^{2}}=\frac{A x+B}{x^{2}+2}+\frac{C x+D}{\left(x^{2}+2\right)^{2}} .
$$

Multiplying by the lcd $\left(x^{2}+2\right)^{2}$ yields

$$
\begin{aligned}
8 x^{3}+13 x & =(A x+B)\left(x^{2}+2\right)+C x+D \\
& =A x^{3}+B x^{2}+(2 A+C) x+(2 B+D) .
\end{aligned}
$$

So we solve the following system of equations

| $A x^{3}$ |  | $=8 x^{3}$ |
| ---: | :--- | ---: | :--- |
| $B x^{2}$ |  | $=0$ |
| $2 A x+C x$ | $=$ | $13 x$ |
| $2 B+D$ | $=0$ |  |

and get that $A=8, B=0, C=-3, D=0$.
Turns out, we can also use linear algebra and RREF of a matrix to solve for systems of equations (this makes it easier if we have a considerably more complex partial fraction decomposition.

Since there are four unknowns, we will have a 4 x 5 augmented matrix, with the four left columns corresponding to coefficients on $A, B, C, D$, respecively, and the fifth column (from the top down) containing the coefficients for the cubic, quadratic, linear, and constant terms (respectively). So, the coefficient matrix becomes

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 8 \\
0 & 1 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 13 \\
0 & 2 & 0 & 1 & 0
\end{array}\right)
$$

and when we put it into reduced row echelon form (RREF), we get

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 8 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -3 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

If you look, you'll see that this matrix represents the exact solutions that we got before with our usual algebraic steps.

You can preform this on a calculator as well. Here are directions for a TI-83/84:
http://www.itc.csmd.edu/mth/ti83/matrix/rref.htm

Example (Rec Notebk: $\S 7.4, \# 4)$. Evaluate the following integral. $\int \frac{z+1}{z\left(z^{2}+4\right)} d z$

## Solution.

We first preform the partial fraction decomposition

$$
\begin{aligned}
\frac{z+1}{z\left(z^{2}+4\right)} & =\frac{A}{z}+\frac{B z+C}{z^{2}+4} \\
\Rightarrow \quad z+1 & =A z^{2}+4 A+B z^{2}+C z
\end{aligned}
$$

Our coefficient matrix yields

$$
\operatorname{rref}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
4 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & \frac{1}{4} \\
0 & 1 & 0 & -\frac{1}{4} \\
0 & 0 & 1 & 1
\end{array}\right)
$$

$$
\begin{aligned}
\int \frac{z+1}{z\left(z^{2}+4\right)} d z & =\int\left(\frac{\frac{1}{4}}{z}+\frac{\frac{1}{4} z+1}{z^{2}+4}\right) d z \\
& =\int \frac{\frac{1}{4}}{z} d z+\int \frac{\frac{1}{4} z+1}{z^{2}+4} d z \\
& =\frac{1}{4} \int \frac{d z}{z}+\frac{1}{4} \int \frac{z}{z^{2}+4} d z+\int \frac{d z}{z^{2}+4} \\
& =\frac{1}{4} \ln |z|+\frac{1}{8} \ln \left|z^{2}+4\right|+\frac{1}{2} \arctan \left(\frac{z}{2}\right)+C
\end{aligned}
$$

## Assignment

Recitation Notebook:
§7.3-\#2, \#4,
§7.4-\#1, \#2, \#5
§7.5-\#1

* For $\S 7.4-\# 2, \# 5$ write down the augmented coefficient matrix and the reduced row echelon form (RREF) of the matrix. If you so not have access to a calculator to preform this operation, the following website can do it:
http://www.math.purdue.edu/~dvb/matrix.html
As always, you may work in groups, but every member must individually submit a homework assignment.

