Recitation 03: Trig Substitution

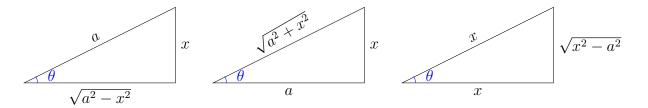
Joseph Wells Arizona State University

 $27 \ {\rm January} \ 2014$

When we see a polynomial under a square root, often times it is easiest to approach with a trig substitution. Your book builds it up more intuitively, but the results for the three basic trig substitutions are as follows:

Integrand	Trig Substitution
$\sqrt{a^2 - x^2}$	$x = a\sin(\theta)$
$\sqrt{a^2 + x^2}$	$x = a \tan(\theta)$
$\sqrt{x^2 - a^2}$	$x = a \sec(\theta).$

Each of these corresponds to a reference triangle



Example (Rec Notebk: §7.3, # 1). Evaluate the following integral: $\int \frac{dx}{\sqrt{16+4x^2}}$

Solution.

Here a = 2, so we use the trig substitution $x = 2 \tan(\theta)$ and $dx = 2 \sec^2(\theta) d\theta$:

$$\int \frac{dx}{\sqrt{16 + 4x^2}} = \int \frac{dx}{2\sqrt{4 + x^2}}$$
$$= \int \frac{2\sec^2(\theta)d\theta}{2\sqrt{4(1 + \tan^2(\theta))}}$$
$$= \frac{1}{2} \int \frac{\sec^2(\theta)d\theta}{\sec(\theta)}$$
$$= \frac{1}{2} \int \sec(\theta) d\theta$$
$$= \frac{1}{2} \ln|\sec(\theta) + \tan(\theta)| + \frac{1}{2} \ln|\tan(\theta)| + \frac{1}$$

C

Using our reference triangle, we get that $\sec(\theta) = \frac{\sqrt{4+x^2}}{2}$ and $\tan(\theta) = \frac{x}{2}$, so

$$\frac{1}{2}\ln|\sec(\theta) + \tan(\theta)| + C = \frac{1}{2}\ln\left|\frac{1}{2}(\sqrt{4+x^2}+x)\right| + C.$$

Assignment

This week's worksheet can be found here:

http://math.joedub.net/teaching/mat271_spring2014/mat271_spring2014_homework03.
pdf

As always, you may work in groups, but every member must individually submit a homework assignment.