# MAT271 Exam 2 Review 

Spring 2014

This is not a complete list of topics covered in class, but merely a compilation of supplemental exercises from each section. You should still review class notes and the practice exam posted on ASU's MAT271 course page:
http://math.asu.edu/first-year-math/mat-271-calculus-analytic-geometry-ii

## §6.1 Velocity and Net Change

Assume the following velocities have units of $\mathrm{m} / \mathrm{s}$ and let $t$ be measured in seconds. Find both the displacement and distance traveled over the given intervals.

1. $v(t)=6-2 t ; 0 \leq t \leq 6$
2. $v(t)=t^{3}-5 t^{2}+6 t ; 0 \leq t \leq 5$

Find the position and velocity of an object moving along a straight line with the given acceleration, initial velocity, and position. Assume units of meters and seconds.
3. $a(t)=-9.8, v(0)=20, s(0)=0$
4. $a(t)=-0.01 t, v(0)=10, s(0)=0$

## $\S 6.2$ Regions Between Curves

Sketch the region bounded by the graphs of the functions, and find the area of the region.
5. $f(x)=x^{2}+2 x+1, g(x)=3 x+3$
7. $f(x)=2 \sin (x), g(x)=\tan (x)$, $-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}$
6. $f(x)=\frac{10}{x}, x=0, y=2, y=10$
8. $f(x)=\cos (x), g(x)=2-\cos (x)$,
$0 \leq x \leq 2 \pi$

## §6.3 Volume by Slicing

Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given line.
9. $y=\sqrt{x}, y=0, x=4$, the line $x=0$
11. $y=x^{2}, y=4 x-x^{2}$, the line $y=0$
10. $y=\frac{1}{1+x}, y=0, x=0, x=3$
12. $y=\sin (x), y=0, x=0, x=\pi$ the line $y=4$ the line $y=0$

## §6.4 Volume by Shells

Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given line.
13. $y=4-x, y=2, x=0$, the line $y=0$
15. $y=x^{2}, x=1, y=0$, the line $x=-2$
14. $y=\frac{1}{x+1}, y=1-\frac{x}{3}$, the line $y=0$
16. $y=x, y=2 x+2, x=2, x=2, x=6$, the line $x=0$

## §6.5 Length of Curves

Find the arc length of the following curves on the given interval by integrating with respect to $x$.
17. $y=\frac{\left(x^{2}+2\right)^{3 / 2}}{3} ;[0,1]$
19. $y=\frac{x^{4}}{4}+\frac{1}{8 x^{2}} ;[1,2]$
18. $y=\ln (\cos (x)) ;\left[0, \frac{\pi}{4}\right]$
20. $y=75\left(e^{x / 150}+e^{-x / 150}\right) ;[-100,100]$

## §6.6 Physical Applications

21. It takes 100 J of work to stretch a spring 0.5 m from its equilibrium position. How much work is needed to stretch it an additional 0.75 m ?
22. A water tank is shaped like an inverted cone with height 6 m and a base radius 1.5 m . If the tank is full, how much work is required to pump the water to the level of the top of the tank and out of the tank?
23. A swimming pool has the shape of a box with a base that measures 25 m by 15 m and a depth of 2.5 m . How much work is required to pump the water out of the pool when it is full?
24. A water trough has a semicircular cross section with a radius of 0.25 m and a length of 3 m . How much work is required to pump the water out of the trough when it is full?

## Solutions

Although these were all taken from the textbook's answer key, there may still be typos.

1. displacement: 0 , distance: 18 m
2. displacement: $\frac{275}{12} \mathrm{~m}$, distance: 23.75 m
3. $s(t)=-4.9 t^{2}+20 t \mathrm{~m} ; \quad v(t)=-9.8 t+20 \mathrm{~m} / \mathrm{s}$
4. $s(t)=-\frac{0.005}{3} t^{3}+10 t \mathrm{~m} ; \quad v(t)=-0.005 t^{2}+10 \mathrm{~m} / \mathrm{s}$
5. $\frac{9}{2}$
6. $10 \ln (5) \approx 16.094$
7. $2[1-\ln (2)] \approx 0.614$
8. $4 \pi \approx 12.566$
9. $\frac{128 \pi}{5}$
10. $\pi\left[16-\ln (2)-\frac{3}{4}\right] \approx 32.485$
11. $\frac{32 \pi}{3}$
12. $\frac{\pi^{2}}{2} \approx 4.935$
13. $\frac{32 \pi}{3}$
14. $\frac{8 \pi}{27}$
15. $\frac{11 \pi}{6}$
16. $\frac{608 \pi}{3}$
17. $\frac{4}{3}$
18. $\ln (\sqrt{2}+1) \approx 0.881$
19. $\frac{123}{32}$
20. $150\left(e^{2 / 3}-e^{-2 / 3}\right) \approx 215$
21. 525 J
22. $66,150 \pi \mathrm{~J}$
23. $11,484,375 \mathrm{~J}$
24. $\approx 32,667 \mathrm{~J}$
