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Example (Rec. Ntbk, §10.1, #1).

a. Eliminate the parameter to obtain an equation in x and y.

b. Describe the curve and indicate the positive orientation

Solution.

i. x = (t+ 1)2, y = t+ 2; −10 ≤ t ≤ 10
a. Notice that t+ 1 = y − 1, so we have

x = (t+ 1)2

= (y − 1)2

This is just a (horizontal) parabola that opens to the right and intersects the
x-axis at y = 1.

b. The orientation moves up the y-axis, tracing this parabola.

ii. x = 3 cos(t), y = 3 sin(t), 0 ≤ t ≤ π/2.
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a. Using our pythagorean identity, we have

x2 + y2 = 9(cos2(t) + sin2(t))

= 9

Since 0 ≤ t ≤ π/2, both x, y ≥ 0

b. This is a counter-clockwise oriented quarter-circlular arc, centered at the
origin with radius 3.
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Taking a derivative is easy in parametric equations too. From the chain rule, we have

dy

dt
=
dy

dx

dx

dt
⇒ dy

dx
=

(
dy
dt

)(
dx
dt

) .
Example (Rec. Ntbk §10.1, #5). Find all the points on the following curve that has
the given slope: x = 2 cos(t), y = 8 sin(t), slope = −1.
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Solution.

This parameterizes an ellipse with x-radius 2 and y-radius 8. By our previous equation,
we solve for t such that

−1 =
dy

dx
=
y′(t)

x′(t)

=
8 cos(t)

−2 sin(t)

1

4
=

cos(t)

sin(t)

4 = tan(t)

t = arctan(4).

So the points (x, y) where the slope is −1 are

(x, y) =

(
± 2√

17
,± 32√

17

)
.
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To convert from Cartesian coordinates (x, y) to polar coordinates (r, θ), we use the con-
versions below

x = r cos(θ), y = r sin(θ),

r = x2 + y2, tan(θ) =
y

x
.
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Example (Rec. Ntbk. §10.2, #1). Convert the following equations to Cartesian coor-
dinates. Describe the resulting curve.

a. r = cot(θ) csc(θ)

b. r = sin(θ) sec2(θ)

Solution.

a.

r = cot(θ) csc(θ)

r sin(θ) =
1

tan(θ)

y =
x

y

x = y2.

The resulting curve is a parabola with vertex (0, 0) that opens to the right.
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b.

r = sin(θ) sec2(θ)

r cos(θ) =
sin(θ)

cos(θ)

x = tan(θ)

x =
y

x
y = x2.

The resulting curve is a parabola with vertex (0, 0) that opens to the right.
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Example (Rec. Ntbk. §10.2, #4). Sketch the following sets of points {(r, θ) : 1 < r <
2, π

6
≤ θ ≤ π

3
}

The shape is a portion of the annulus, where the circular arcs are dashed and the radial
lines are solid.
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As before, we can also differentiate in polar coordinates. By recognizing that our radius
is a function of theta r = f(θ), we get

dy

dx
=
f ′(θ) sin(θ) + f(θ) cos(θ)

f ′(θ) cos(θ)− f(θ) sin(θ)
.
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Example (Rec. Ntbk). Find the points (r, θ) for which the polar curve r = 3 + 6 sin(θ)
(called a limaçon) has horizontal or vertical tangents.

By our formula, this amounts to solving for pairs (r, θ) for which f ′(θ) sin(θ)+f(θ) cos(θ) =
0 and f ′(θ) cos(θ)− f(θ) sin(θ) = 0.

In particular, we have
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dy

dx
=

6 cos(θ) sin(θ) + (3 + 6 sin(θ)) cos(θ)

6 cos(θ) cos(θ)− (3 + 6 sin(θ)) sin(θ)

=
cos(θ)(4 sin(θ) + 1)

2− sin(θ)− 4 sin2(θ)
.

The numerator is 0 when θ = π
2
, 3π

2
, and at the two values of θ ∈ [0, 2π] for which

sin(θ) = −1
4
.

Using the quadratic formula, the denominator is 0 at the two values of θ ∈ [0, 2π) where

sin(θ) = −1+
√
33

8
and the two values of θ ∈ [0, 2π) where sin(θ) = −1−

√
33

8
.


