Recitation 13: Taylor Series and Parametric Equations

Joseph Wells
Arizona State University

November 14, 2014

Example (Rec Ntbk §9.3, \#3).
a. Find the first four nonzero terms of the Taylor series centered at 2 for the function $f(x)=\frac{1}{x}$.
b. Write the power series using summation notation.

$$
p_{3}(x)=\frac{1}{2}-\frac{1}{4}(x-2)+\frac{1}{8}(x-2)^{2}-\frac{1}{16}(x-2)^{3}
$$

In summation notation, this is

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k+1}}(x-2)^{k}
$$

Example (Rec Ntbk §9.4, \#1). Evaluate the limit using the Taylor series: $\lim _{x \rightarrow \infty} x \sin \left(\frac{1}{x}\right)$.
Use the substitution $x=\frac{1}{t}$ and note that $x \rightarrow \infty$ as $t \rightarrow 0^{+}$. Also, let's pretend we know nothing about the sinc function or L'Hopital's and approach this purely with a Taylor series. (Aside: $\operatorname{sinc}(x)=\frac{\sin (x)}{x}$, and we call it the "sinc" or "cardinal sine" function.)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x \sin \left(\frac{1}{x}\right) & =\lim _{t \rightarrow 0^{+}} \frac{\sin (t)}{t} \\
& =\lim _{t \rightarrow 0^{+}} \frac{\left(t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}+\cdots\right)}{t} \\
& =\lim _{t \rightarrow 0^{+}}\left(1-\frac{t^{2}}{3!}+\frac{t^{4}}{5!}+\cdots\right) \\
& =1
\end{aligned}
$$

Assignment

Recitation Notebook:
§9.3-\#1, \#2, \#4
§9.4-\#2, \#3, \#4

As always, you may work in groups, but every member must individually submit a homework assignment.

