Recitation 11: Alternating Series

Joseph Wells
Arizona State University

October 31, 2014

Theorem (Alternating Series Test). The alternating series $\sum(-1)^{k} a_{k}$ converges if

- $a_{k} \geq a_{k+1}>0$ for all $k>N$, where N is sufficiently large, and
- $\lim _{k \rightarrow \infty} a_{k}=0$.

Definition. Given a series $\sum a_{n}$, we say that $\sum a_{n}$ converges absolutely if $\sum\left|a_{n}\right|$ converges. We say that it converges conditionally if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ does not.

Example. Determine whether the following series converges. $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{\sqrt{k^{2}+4}}$

Solution.

Since $\frac{1}{\sqrt{k^{2}+4}} \geq \frac{1}{\sqrt{(k+1)^{2}+4}}$ for ever $k \geq 0$ and $\lim _{k \rightarrow \infty} \frac{1}{\sqrt{k^{2}+4}}=0$, the series converges by the alternating series test.

Example. Determine whether the following series converge absolutely or conditionally. $\sum_{k=1}^{\infty} \frac{(-1)^{k} \arctan (k)}{k^{3}}$

Solution.

It's not hard to see that $\frac{\arctan (k)}{k^{3}} \geq \frac{\arctan (k+1)}{k^{3}}$ for some sufficiently large k (try taking a derivative of $\frac{\arctan (x)}{x^{3}}$ and see that it is negative for the interval $\left.(0, \infty)\right)$. As well, $\lim _{k \rightarrow \infty} \frac{\arctan (k)}{k^{3}}=0$, so the series converges by the Alternating Series Test.
Since $0 \leq \arctan (k) \leq \frac{\pi}{2}$ for every $k \geq 1$, we can use the comparison test with the convergent p-series $\sum_{k=1}^{\infty} \frac{p i}{2}\left(\frac{1}{k^{3}}\right)$ to see that $\sum_{k=1}^{\infty}\left|\frac{(-1)^{k} \arctan (k)}{k^{3}}\right|=\sum_{k=1}^{\infty} \frac{\arctan (k)}{k^{3}}$ converges.

Assignment

Recitation Notebook:

§8.5-\#1(b), \#2, \#3, \#4
§8.6-\#1(b), \#2, \#6

As always, you may work in groups, but every member must individually submit a homework assignment.

