Recitation 11: Alternating Series

Joseph Wells Arizona State University

October 31, 2014

Theorem (Alternating Series Test). The alternating series $\sum_{k=1}^{k} (-1)^{k} a_{k}$ converges if

• $a_k \ge a_{k+1} > 0$ for all k > N, where N is sufficiently large, and

•
$$\lim_{k \to \infty} a_k = 0.$$

Definition. Given a series $\sum a_n$, we say that $\sum a_n$ converges absolutely if $\sum |a_n|$ converges. We say that it converges conditionally if $\sum a_n$ converges but $\sum |a_n|$ does not.

Example. Determine whether the following series converges.

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{\sqrt{k^2 + 4}}$$

Solution.

Since $\frac{1}{\sqrt{k^2+4}} \ge \frac{1}{\sqrt{(k+1)^2+4}}$ for ever $k \ge 0$ and $\lim_{k\to\infty} \frac{1}{\sqrt{k^2+4}} = 0$, the series converges by the alternating series test.

Example. Determine whether the following series converge absolutely or conditionally. $\sum_{k=1}^{\infty} \frac{(-1)^k \arctan(k)}{k^3}$

Solution.

It's not hard to see that $\frac{\arctan(k)}{k^3} \ge \frac{\arctan(k+1)}{k^3}$ for some sufficiently large k (try taking a derivative of $\frac{\arctan(x)}{x^3}$ and see that it is negative for the interval $(0,\infty)$). As well, $\lim_{k\to\infty} \frac{\arctan(k)}{k^3} = 0$, so the series converges by the Alternating Series Test. Since $0 \le \arctan(k) \le \frac{\pi}{2}$ for every $k \ge 1$, we can use the comparison test with the convergent p-series $\sum_{k=1}^{\infty} \frac{pi}{2} \left(\frac{1}{k^3}\right)$ to see that $\sum_{k=1}^{\infty} \left|\frac{(-1)^k \arctan(k)}{k^3}\right| = \sum_{k=1}^{\infty} \frac{\arctan(k)}{k^3}$ converges.

Assignment

Recitation Notebook: §8.5 - #1(b), #2, #3, #4 §8.6 - #1(b), #2, #6

As always, you may work in groups, but every member must individually submit a homework assignment.