Recitation 09: Sequences and Series

Joseph Wells
Arizona State University

October 17, 2014

Example (Rec Notebk: §8.2, \#3). Geometric sequences Determine whether the following sequences converge or diverge and describe whether they do so monotonically or by oscillation. Give the limit when the sequence converges.
a. $\left\{(-1.01)^{n}\right\}_{n \in \mathbb{Z}^{+}}$
b. $\left\{2^{n} 3^{-n}\right\}_{n \in \mathbb{Z}^{+}}$
a. $\left\{(-1.01)^{n}\right\}$ diverges since $|-1.01|>1$. Since it is negative, it oscillates.
b. $\left\{2^{n} 3^{-n}\right\}=\left\{\left(2 \cdot 3^{-1}\right)^{n}\right\}=\left\{(2 / 3)^{n}\right\}$ converges since $|2 / 3|<1$. Since it is positive, it does so monotonically. The limit is 0 .

Example (Book: $\S 8.2, \# 18)$. Determine the limit of the following sequence, or state that it diverges: $\left\{\frac{\ln (1 / n)}{n}\right\}_{n \in \mathbb{Z}^{+}}$

By L'Hopital's rule,

$$
\lim _{n \rightarrow \infty} \frac{\ln (1 / n)}{n} \stackrel{L^{\prime} H}{=} \lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

Theorem (8.6). The following sequences are ordered according to the increasing growth rates as $n \rightarrow \infty$. For all positive real numbers p, q, r, s and $b>1$,

$$
\left\{\ln ^{q} n\right\} \ll\left\{n^{p}\right\} \ll\left\{n^{p} \ln ^{r} n\right\} \ll\left\{n^{p+s}\right\} \ll\left\{b^{n}\right\} \ll\{n!\} \ll\left\{n^{n}\right\} .
$$

Example (Rec Notebk: $\S 8.2, \# 4$). Comparing growth rates of sequences Determine which sequence has the greater growth rate as $n \rightarrow \infty$. Be sure to justify and explain your work: $a_{n}=3^{n} ; b_{n}=n$!.

Following from Theorem $8.6, n!\gg 3^{n}$ since $n!\gg b^{n}$ for every $b>1$.

Recall
Definition. A series is a limit of sums of terms b_{k}, and is given by $\sum_{k=0}^{\infty} b_{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} b_{k}$ Definition. A geometric series is a series of the form $\sum_{k=0}^{\infty} a r^{k}$ (where r is called the ratio). If the upper limit of the summation is finite, we have that $\sum_{k=0}^{n} a r^{k}=\frac{1-r^{n}}{1-r}$. If we take the limit as $n \rightarrow \infty$, we get $\sum_{k=0}^{\infty} a r^{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a r^{k}$. What conditions do we need to determine whether or not this limit converges? $|r|<1$.

Definition. A telescoping series is a series that has only finitely many terms after cancellation.

Example (Book §8.3, \#7). Evaluate the following geometric sum: $\sum_{k=0}^{8} 3^{k}$

$$
\sum_{k=0}^{8} 3^{k}=1 \cdot \frac{1-3^{9}}{1-3}=\frac{19682}{2}=9841
$$

Example (Book $\S 8.3, \# 11$). Evaluate the following geometric sum: $\sum_{k=0}^{9}\left(-\frac{3}{4}\right)^{k}$

$$
\sum_{k=0}^{9}\left(-\frac{3}{4}\right)^{k}=1 \cdot \frac{1-\left(-\frac{3}{4}\right)^{10}}{1+\frac{3}{4}}=\frac{4^{10}-3^{10}}{4^{10}-3 \cdot 4^{9}}=\frac{141,361}{262,144} \approx 0.54
$$

Example (Book §8.3, \#19). Evaluate the geometric series, or state that it diverges:
$\sum_{k=0}^{\infty}\left(\frac{1}{4}\right)^{k}$
$\left|\frac{1}{4}\right|<1$, so it converges to $\sum_{k=0}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{1}{1-\frac{1}{4}}=\frac{4}{3}$.
Example (Book §8.3, \#29). Evaluate the geometric series, or state that it diverges:
$\sum_{k=4}^{\infty} \frac{1}{5^{k}}$
$\left|\frac{1}{5}\right|<1$, so it converges to $\sum_{k=4}^{\infty} \frac{1}{5^{k}}=\frac{\frac{1}{5^{4}}}{1-\frac{1}{5}}=\frac{1}{5^{4}-5^{3}}=\frac{1}{500}$.

Example (Book $\S 8.3, \# 47$). Find a formula for the n-th term of the sequence of partial sums $\left\{S_{n}\right\}$. Then evaluate $\lim _{n \rightarrow \infty} S_{n}$ to obtain the value of the series or state that the series diverges: $\sum_{k=1}^{\infty}\left(\frac{1}{k+1}-\frac{1}{k+2}\right)$

Notice that

$$
\begin{aligned}
S_{1} & =\frac{1}{2}-\frac{1}{3} \\
S_{2} & =\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=\frac{1}{2}-\frac{1}{4} \\
& \vdots \\
S_{n} & =\frac{1}{2}-\frac{1}{n+2}=\frac{n}{2 n+4} .
\end{aligned}
$$

Then $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{n}{2 n+4}=\frac{1}{2}$.

Example (Book $\S 8.3, \# 51$). Find a formula for the n-th term of the sequence of partial sums $\left\{S_{n}\right\}$. Then evaluate $\lim _{n \rightarrow \infty} S_{n}$ to obtain the value of the series or state that the series diverges: $\sum_{k=1}^{\infty} \ln \left(\frac{k+1}{k}\right)$

Notice that, $\ln \left(\frac{k+1}{k}\right)=\ln (k+1)-\ln (k)$, so

$$
\begin{aligned}
& S_{1}=\ln (2)-\ln (1) \\
& S_{2}=\ln (2)-\ln (1)+\ln (3)-\ln (2)=\ln (3)-\ln (1) \\
& \quad \vdots \\
& S_{n}=\ln (n+1)-\ln (1)=\ln (n+1)
\end{aligned}
$$

Then $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \ln (n+1)$, which diverges.

Example (Book $\S 8.3, \# 53$). Find a formula for the n-th term of the sequence of partial sums $\left\{S_{n}\right\}$. Then evaluate $\lim _{n \rightarrow \infty} S_{n}$ to obtain the value of the series or state that the series diverges: $\sum_{k=1}^{\infty} \frac{1}{(k+p)(k+p+1)}$, where p is a positive integer.

By partial fractions, $\frac{1}{(k+p)(k+p+1)}=\frac{1}{k+p}-\frac{1}{k+p+1}$, so

$$
\begin{aligned}
S_{1} & =\frac{1}{1+p}-\frac{1}{2+p} \\
S_{2} & =\frac{1}{1+p}-\frac{1}{2+p}+\frac{1}{2+p}-\frac{1}{3+p}=\frac{1}{1+p}-\frac{1}{3+p} \\
& \vdots \\
S_{n} & =\frac{1}{1+p}-\frac{1}{n+p+1}=\frac{n}{(1+p)(n+p+1)}=\frac{n}{n(p+1)+(p+1)^{2}} .
\end{aligned}
$$

Then $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{n}{n(p+1)+(p+1)^{2}}=\frac{1}{p+1}$.

Assignment

Recitation Notebook:
§8.2-\#1, \#2
§8.3-\#3, \#4, \#5
and the following worksheet:
http://math.joedub.net/teaching/mat271_fall2014/homework09.pdf
As always, you may work in groups, but every member must individually submit a homework assignment.

