Recitation 07: Shell Method \& Arc Length

Joseph Wells
Arizona State University

October 3, 2014

Example (13). Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given line. $y=4-x, y=2, x=0$, the line $y=0$

Since we are revolving around $y=0$, we have to integrate with respect to y. So $y=4-x \Rightarrow x=4-y$ and our limits of integration become $y=2$ and $y=4-(0)=4$. Hence

$$
\begin{aligned}
V & =2 \pi \int_{2}^{4} y(4-y) d y \\
& =\left.2 \pi\left(2 y^{2}-\frac{1}{3} y^{3}\right)\right|_{2} ^{4} \\
& =\frac{32 \pi}{3} .
\end{aligned}
$$

Example (14). Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given line. $y=\frac{1}{x+1}, y=1-\frac{x}{3}$, the line $y=0$

Since we are revolving around $y=0$, we have to integrate with respect to y. So $y=\frac{1}{x+1} \Rightarrow x=\frac{1}{y}-1$ and $y=$ $1-\frac{x}{3} \Rightarrow x=3-3 y$. Our limits of integration become the $y=\frac{1}{3}$ and $y=1$. Hence

$$
\begin{aligned}
V & =2 \pi \int_{1 / 3}^{1} y(3-3 y-(1 / y-1)) d y \\
& =2 \pi \int_{1 / 3}^{1}\left(4 y-3 y^{2}-1\right) d y \\
& =\left.2 \pi\left(2 y^{2}-y^{3}-y\right)\right|_{1 / 3} ^{1}=\frac{8 \pi}{27} .
\end{aligned}
$$

Example (17). Find the arc length of the following curves on the given interval by integrating with respect to $x . y=\frac{\left(x^{2}+2\right)^{3 / 2}}{3} ;[0,1]$

$$
\begin{aligned}
y^{\prime} & =x\left(x^{2}+2\right)^{1 / 2}, \text { so } \\
& 1+y^{\prime 2}=1+x^{2}\left(x^{2}+2\right)=x^{4}+2 x^{2}+1=\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Thus

$$
L=\int_{0}^{1}\left(x^{2}+1\right) d x=\left.\left(x^{3} / 3+x\right)\right|_{0} ^{1}=\frac{4}{3}
$$

Assignment

Recitation Notebook:

§6.4-\#2, \#4
§6.5-\#1, \#3
and the following worksheet:
http://math.joedub.net/teaching/fall2014/homework07.pdf
As always, you may work in groups, but every member must individually submit a homework assignment.

