Recitation 02: Integration by Parts \& Trig Integrals

Joseph Wells
Arizona State University

August 29, 2014

Recall the theorems:
Theorem (Integration by Parts). Suppose that u and v are differentiable functions. Then

$$
\int u d v=u v-\int v d u
$$

Theorem (Integration by Parts - Definite Integral). Suppose that u and v are differentiable on (a, b). Then

$$
\int_{a}^{b} u(x) v^{\prime}(x) d x=\left.u(x) v(x)\right|_{a} ^{b}-\int_{a}^{b} v(x) u^{\prime}(x) d x
$$

Example (Integration by Parts). Evaluate the following integral:

$$
\int \theta \sec ^{2}(\theta) d \theta
$$

Solution.
Let $u=\theta$ and $d v=\sec ^{2}(\theta) d \theta$. Then $d u=d \theta$ and $v=\tan (\theta)+C$. So

$$
\begin{aligned}
\int \theta \sec ^{2}(\theta) d \theta & =\theta \tan (\theta)-\int \tan (\theta) d \theta \\
& =\theta \tan (\theta)-\ln |\sec (\theta)|+C
\end{aligned}
$$

Example (Repeated Integration by Parts). Evaluate the following integral:

$$
\int t^{3} e^{-t} d t
$$

Solution.

Since t^{3} is a polynomial, we should probably pick $u=t^{3}$ and $d v=e^{-t}, d t$. However, doing so will require us to do integration by parts 3 times. Polynomials are actually kind of special in that multiple derivatives will eventually get us to zero. As a result, there is a faster way through it (the Tabular Method).

We form a table with two columns. The left column is u and the right column is $d v$. In the left column, we take a derivative of each preceding row until we get to 0 . In the right column, we take an anti-derivative of each preceding row. Our table thus looks like this:

u	$d v$
t^{3}	e^{-t}
$3 t^{2}$	$-e^{-t}$
$6 t$	e^{-t}
6	$-e^{-t}$
0	e^{-t}

From here, we alternately assign \pm to the u terms and associate each u to the $d v$ in the row below.

So then we multiply associated u and $d v$ terms together and add them to get

$$
\int t^{3} e^{-t} d t=-t^{3} e^{-t}-3 t^{2} e^{-t}-6 t e^{-t}-6 e^{-t}+C
$$

Example (Definite Integrals (Integration by Parts)). Evaluate the following definite integral:

$$
\int_{0}^{\pi / 2} x \cos (2 x) d x
$$

Solution.

Let $u=x$ and $d v=\cos (2 x) d x$. Then $d u=d x$ and $v=\frac{1}{2} \sin (2 x)+C$, so

$$
\begin{aligned}
\int_{0}^{\pi / 2} x \cos (2 x) d x & =\left.\frac{1}{2} x \sin (2 x)\right|_{0} ^{\pi / 2}-\frac{1}{2} \int_{0}^{\pi / 2} \sin (2 x) d x \\
& =\left.\frac{1}{2} x \sin (2 x)\right|_{0} ^{\pi / 2}+\left.\frac{1}{4} \cos (2 x)\right|_{0} ^{\pi / 2} \\
& =(0-0)+\left(-\frac{1}{4}-\frac{1}{4}\right)=-\frac{1}{2}
\end{aligned}
$$

Example (Integrals of $\sin (x)$ and $\cos (x))$. Evaluate the following integral:

$$
\int \sin ^{2}(x) \cos ^{2}(x) d x
$$

Solution.

Since both sin and cos have even powers, we use the half-angle identities to rewrite the integrand.

Recall that $\cos ^{2}(x)=\frac{1}{2}(1+\cos (2 x))$ and $\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x)$. So

$$
\begin{aligned}
\int \sin ^{2}(x) \cos ^{2}(x) & =\frac{1}{4} \int(1-\cos (2 x))(1+\cos (2 x)) d x \\
& =\frac{1}{4} \int\left[1-\cos ^{2}(2 x)\right] d x \\
& =\frac{1}{4} \int\left[1-\frac{1}{2}(1+\cos (4 x))\right] d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4} \int d x-\frac{1}{8} \int d x-\frac{1}{8} \int \cos (4 x) d x \\
& =\frac{1}{4} x-\frac{1}{8} x-\frac{1}{32} \sin (4 x)=\frac{x}{8}-\frac{\sin (4 x)}{32} .
\end{aligned}
$$

Example (Integrals of $\tan (x)$ and $\sec (x)$). Evaluate the following integral:

$$
\int \sec ^{2}(x) \tan ^{1 / 2}(x) d x
$$

Solution.

Since sec has an even power, we choose $u=\tan (x)$ and change any leftover $\sec ^{2 k}(x)$ terms into $\left(\tan ^{2}(x)+1\right)^{k}$. So, with our choice of u, we get that $d u=\sec ^{2}(x) d x$, and thus

$$
\begin{aligned}
\int \sec ^{2}(x) \tan ^{1 / 2}(x) d x & =\int u^{1 / 2} d u \\
& =\frac{2}{3} u^{3 / 2}+C \\
& =\frac{2}{3} \tan ^{3 / 2}(x)+C
\end{aligned}
$$

Example (Square roots). Evaluate the following integral:

$$
\int_{0}^{\pi / 2} \sqrt{1-\cos (2 x)} d x
$$

Solution.

Again, we appeal to the half-angle formula $\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x))$ and get

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sqrt{1-\cos (2 x)} d x & =\sqrt{2} \int_{0}^{\pi / 2} \sin (x) d x \\
& =-\left.\sqrt{2} \cos (x)\right|_{0} ^{\pi / 2} \\
& =\sqrt{2}
\end{aligned}
$$

Assignment

Recitation Notebook:

§7.1-\#1, \#2, \#6
§7.2-\#1, \#3, \#4
As always, you may work in groups, but homework must written up and submitted by each individual.

