Recitation 13: Antiderivatives \& Integrals Galore

Joseph Wells
Arizona State University

May 3, 2014

Example (§5.1, \#1).

a. Does the right Riemann sum underestimate or overestimate the area of the region under the graph of a positive decreasing function? Explain.
b. Does the left Riemann sum underestimate or overestimate the area of the region under the graph of a positive increasing function?

Example (§5.1, \#3). Use the tabulated values of f to evaluate the left and right Riemann sums for $n=8$ in the interval $[1,5] .$| x | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 0 | 2 | 3 | 2 | 2 | 1 | 0 | 2 | 3 |

Solution.

So $L=(0.5)(0+2+3+2+2+1+0+2)=6$ and $R=(0.5)(2+3+2+2+1+0+2+3)=\frac{15}{2}$.

Example (§5.2, \#4).
a. Use geometry to find a formula for $\int_{0}^{a} x d x$ in terms of a.
b. If f is integrable and $\int_{a}^{b}|f(x)| d x=0$, what can you conclude about f ?

Solution.

a. Notice that, for $0 \leq x \leq a$, the area under $f(x)$ is a triangle with base a and height a. The area of the triangle is thus $\frac{1}{2} a^{2}$.
b. We can conclude that $f(x)=0$.

Example (§5.3, \#1). Evaluate the following integral using the Fundamental Theorem of Calculus. Discuss whether your result is consistent with the figure. $\int_{-\pi / 4}^{7 \pi / 4}(\sin x+\cos x) d x$

Solution.
We solve this in the usual fashion:

$$
\begin{aligned}
\int_{-\pi / 4}^{7 \pi / 4}(\sin x+\cos x) d x & =-\cos x+\left.\sin x\right|_{-\pi / 4} ^{7 \pi / 4} \\
& =\left[-\cos \left(\frac{7 \pi}{4}\right)+\sin \left(\frac{7 \pi}{4}\right)\right]-\left[-\cos \left(-\frac{\pi}{4}\right)+\sin \left(-\frac{\pi}{4}\right)\right] \\
& =\left[-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\right]-\left[-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\right] \\
& =0
\end{aligned}
$$

Example (§5.3, \#3). Simplify the expression: $\frac{d}{d x} \int_{x^{2}}^{10} \frac{d z}{z^{2}+1}$.
Solution.
By the Fundamental Theorem of Calculus,

$$
\begin{aligned}
\frac{d}{d x}\left[\int_{x^{2}}^{10} f(z) d z\right] & =\frac{d}{d x}\left[F(10)-F\left(x^{2}\right)\right] \\
& =-2 x f\left(x^{2}\right), \quad \text { (chain rule) }
\end{aligned}
$$

so in particular,

$$
\frac{d}{d x} \int_{x^{2}}^{10} \frac{d z}{z^{2}+1}=-\frac{2 x}{x^{4}+1}
$$

As justification that this is correct, we can brute force our way through it (although in general, it's rare that we could compute the antiderivative so easily, if even at all.)

$$
\begin{aligned}
\frac{d}{d x} \int_{x^{2}}^{10} \frac{d z}{z^{2}+1} & =\frac{d}{d x}\left[\left.\arctan (z)\right|_{x^{2}} ^{10}\right] \\
& =\frac{d}{d x}\left[\arctan (10)-\arctan \left(x^{2}\right)\right] \\
& =-\frac{2 x}{x^{4}+1}
\end{aligned}
$$

Example (§5.4, \#3). Use symmetry to evaluate the following integrals. Draw a figure to interpret your result.
a. $\int_{0}^{2 \pi} \cos x d x$
b. $\int_{0}^{2 \pi} \sin x d x$

Solution.

a. In our interval, $\cos x$ is symmetric about $x=\pi$. So we can rewrite the integral as $2 \int_{0}^{\pi} \cos x d x$. Looking at it again, we see that in our new interval, $\cos x$ is antisymmetric about $\frac{\pi}{2}$ meaning $\int_{0}^{\pi / 2} \cos x d x=-\int_{\pi / 2}^{\pi} \cos x d x$. Thus

$$
\begin{aligned}
\int_{0}^{2 \pi} \cos x d x & =2 \int_{0}^{\pi} \cos x d x \\
& =2 \int_{0}^{\pi / 2} \cos x d x+2 \int_{\pi / 2}^{\pi} \cos x d x \\
& =2 \int_{0}^{\pi / 2} \cos x d x-2 \int_{0}^{\pi / 2} \cos x d x \\
& =0
\end{aligned}
$$

b. In our interval, $\sin x$ is antisymmetric about $x=\pi$, so $\int_{0}^{\pi} \sin x d x=-\int_{\pi}^{2 \pi} \cos x d x$. Thus

$$
\begin{aligned}
\int_{0}^{2 \pi} \sin x d x & =\int_{0}^{\pi} \sin x d x+\int_{\pi}^{2 \pi} \sin x d x \\
& =\int_{0}^{\pi} \sin x d x-\int_{0}^{\pi} \sin x d x \\
& =0
\end{aligned}
$$

Assignment

MAT270 Recitation Notebook

§5.1, Problems 2
§5.2, Problems 1
§5.3, Problems 2,4
§5.4, Problems 2

