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Example (§4.7, #6). Evaluate the following limit or explain why it does not exist. Check
your results by graphing.

lim
x→∞

(
1 +

1

x

)lnx

solution

This equation limit is currently in a “1∞” indeterminate form, so we have to do a bit of
conversion using the fact that f(x)g(x) = eln f(x)g(x) = eg(x) ln f(x). So, we can deduce that

lim
x→∞

(
1 +

1

x

)lnx

= eL

where

L = lim
x→∞

ln(x) ln

(
1 +

1

x

)
(∞ · 0 form) .

Now, we want to use L’Hopital’s on this function, but it’s still not in one of the correct
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indeterminate forms, so we rewrite it as

L = lim
x→∞

ln
(
1 + 1

x

)
1

ln(x)

(0/0 form) .

Applying L’Hopital’s, we get

L
L′H
= lim

x→∞

d
dx

ln
(
1 + 1

x

)
d
dx

1
ln(x)

= lim
x→∞

1
1+ 1

x

(
− 1

x2

)
− 1

x ln(x)2

= lim
x→∞

ln(x)2

x2 + x
(∞/∞ form)

L′H
= lim

x→∞
−

d
dx

ln(x)2

d
dx
x2 + x

= lim
x→∞

2 ln(x)
x

2x + 1
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= lim
x→∞

2 ln(x)

2x2 + x
(∞/∞ form)

L′H
= lim

x→∞
−

d
dx

2 ln(x)
d
dx

2x2 + x

= lim
x→∞

2
x

4x + 1

= lim
x→∞

2

4x2 + x

= 0.

So plugging back into one of our original equations, we get

lim
x→∞

(
1 +

1

x

)ln(x)

= eL = e0 = 1.
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Example (§4.8, #4). Consider the following descriptions of the vertical motion of an
object subject only to the acceleration due to gravity.

A stone is thrown vertically upward with a velocity of 30 m/s from the edge of a cliff 200
m above a river.

1. Find the velocity of the object for all relevant times.

2. Find the position of the object for all relevant times.

3. Find the time when the object reaches its highest point? (What is the height?)

4. Find the time when the object strikes the water.

solution

The force of gravity is g = −9.81m/s2. For simplicity in calculation, however, we’ll just
estimate g = −10m/s2. We begin with the equation representing the object’s acceleration
at a given time:

a(t) = g = −10
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1. If you recall a previous lecture, we briefly discussed that the acceleration was
the derivative of the velocity, so we can deduce the equation of the object’s velocity:

a(t) = v′(t) = g

v(t) = gt + v0

= −10t + 30 (t ≥ 0)

2. Similarly, the velocity is the derivative of the position, so

v(t) = y′(t) = gt + v0

y(t) =
g

2
t2 + v0t + y0

= −5t2 + 30t + 200 (t ≥ 0)

3. The object reaches its highest point when the derivative of the position function
is zero (ie, when v(t) = 0), so

v(t) = 0 = −10t + 30

⇒ t = 3s.
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At 3 seconds, the height of the object (above the water) is

y(3) = −5(9) + 30(3) + 200 = 245m.

4. The object reaches the water when y(t) = 0, so

y(t) = 0 = −5t2 + 30t + 200

= −5(t2 − 6t− 40)

= −5(t− 10)(t + 4)

⇒ t = 10s.
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