Recitation 11: Linear Approximation \& Mean Value Theorem

Joseph Wells
Arizona State University

May 3, 2014

Derivatives can be used to approximate values for functions that don't have nice integer answers. Consider $\sqrt{146}$. Off-hand, it's not obvious what this is, other than it sitting somewhere between 12 and 13. So, we use linear approximation to figure it out. Let

$$
f(x)=\sqrt{x}
$$

Then

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

Since $\sqrt{144}=12$ and 144 is pretty close to 146 , we'll take the tangent line to $f(x)$ at the point where $x=144$ for our approximation.

At this point, finding the equation of the tangent line should be second nature - it is $y=\frac{x}{24}+6$. When $x=146$, we get

$$
y=12.08 \overline{3}
$$

A quick check with Ye Olde calculator shows

$$
\sqrt{146}=12.083046 \ldots
$$

so our approximation was pretty close. The closer we choose our point x, the more accurate our approximation.

Example (§4.5, \#4). Consider the function $f(x)=e^{2 x}$ and express the relationship between a small change in x and the corresponding change in y in the form $d y=f^{\prime}(x) d x$.

Solution

We have that $f^{\prime}(x)=2 e^{2 x}$, so $d y=2 e^{2 x} d x$.

Theorem (Mean Value Theorem). If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there exists a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Geometrically, this can be interpretted as saying, for any curve on the interval $[a, b]$, there is a point on the curve whose tangent line is parallel to the secant line from a to b.

Assignment

MAT270 Recitation Notebook
§4.5, Problems 1,2
§4.6, Problems 1,4,6

