Recitation 10: Optimization

Joseph Wells
Arizona State University

May 3, 2014

Example (§4.3, \#18 (in the book)). A rectangle is constructed with its base on the x-axis and two of its vertices on the parabola $y=16-x^{2}$. What are the dimensions of the rectangle with the maximum area? What is the area?

Solution.

Let's begin by looking at a picture

It's important to see that x is only half of the base of the rectangle. This will affect our equations.

$$
\begin{aligned}
& \text { Optimize : } A=b h=(2 x) y \\
& \text { Constraint }: y=16-x^{2} \\
& \text { Interval of } x:(0,4) \\
& \text { Interval of } y:(0,16)
\end{aligned}
$$

We plug in our constraint to our objective function (the function we're optimizing)

$$
\begin{aligned}
A & =2 x y \\
& =2 x\left(16-x^{2}\right) \\
& =32 x-2 x^{3}
\end{aligned}
$$

and since A is a function of x, we look for our (local) extrema on the interval $(0,4)$.

$$
\begin{aligned}
0 & =\frac{d A}{d x} \\
0 & =32-6 x^{2} \\
\Rightarrow x= \pm \frac{4}{\sqrt{3}} &
\end{aligned}
$$

so we have a critical point at $x=\frac{4}{\sqrt{3}}$. A quick check with the first derivative test tells us that our function A is incincreasing on $\left(0, \frac{4}{\sqrt{3}}\right)$ and decreasing on $\left(\frac{4}{\sqrt{3}}, 4\right)$, so $\frac{4}{\sqrt{3}}$ corresponds to a local maximum. Plugging back in, we get that our rectangle has dimensions $\frac{8}{\sqrt{3}} \times \frac{32}{3}$ and it has area $\frac{256}{3 \sqrt{3}} \approx 49.268$.

Assignment

MAT270 Recitation Notebook
§4.3, Problems 1,3,4
§4.4, Problems 2,4

