Recitation 09: Critical Points \& First Derivative Test

Joseph Wells
Arizona State University

May 3, 2014

Example (§4.1, \#3). Find the critical points of f. Assume a and b are constants.

$$
f(x)=x^{3}-3 a x^{2}+3 a^{2} x-a^{3}+b
$$

Solution.

As usual, we will take the derivative, set it equal to 0 , and solve.

$$
\begin{aligned}
0 & =f^{\prime}(x) \\
& =3 x^{2}-6 a x+3 a^{2} \\
& =3(x-a)^{2},
\end{aligned}
$$

so critical points occur when $x=a$.

Example (§4.1, \#4).

$$
f(x)=x^{2 / 3}\left(4-x^{2}\right) ; \quad[-3,4]
$$

a. Find the critical points of the following functions on the given interval.
b. Use a graphing device to determine whether the critical points correspond to local maxima, local minima, or neither.
c. Find the absolute maximum and absolute minimum values on the given interval.

Solution.
a. Take the derivative, set it equal to 0 , and solve.

$$
\begin{aligned}
0 & =f^{\prime}(x) \\
& =\frac{d}{d x}\left[x^{2 / 3}\left(4-x^{2}\right)\right] \\
& =\frac{d}{d x}\left[4 x^{2 / 3}-x^{8 / 3}\right] \\
& =\frac{8}{3} x^{-1 / 3}-\frac{8}{3} x^{5 / 3} \\
& =\frac{8}{3} x^{-1 / 3}\left(1-x^{2}\right) \\
& =\frac{8}{3} x^{-1 / 3}(1-x)(1+x) .
\end{aligned}
$$

Notice that only $x= \pm 1$ make the equation zero. $x^{-1 / 3}=\frac{1}{x^{1 / 3}}$ is undefined at $x=0$, but our definition of a critical point also includes places where the first derivative is undefined, so critical points occur when $x=-1,0,1$.
b.

It's clear from the picture that $x= \pm 1$ correspond to local maxima, $x=0$ corresponds to a local minimum, and $x=3,4$ are neither (why? local extrema only
occur on the interior of the interval we're examining).
c. To calculate we absolute extrema, we calculate the values of f at all of our critical points and at the endpoints.

$$
\begin{aligned}
f(-3) & \approx-10.4 \\
f(-1) & =3 \\
f(0) & =0 \\
f(1) & =3 \\
f(4) & \approx-30.2
\end{aligned}
$$

It's clear from this table that $f(-1)=f(1)=3$ is our absolute maximum and that $f(4) \approx-30.2$ is our absolute minimum of the interval.

Example (§4.1, \#5). Graph the following function and determine the local and absolute extreme values on the given interval.

$$
f(x)=|x-3|+|x+2| ; \quad[-4,4]
$$

Solution.

From the graph, we can see that $x=4$ corresponds to our absolute maximum and the whole interval $I=[-2,3]$. Since I is on the interior of our interval, I corresponds to our local minima. There are no local maxima.

Example (§4.2, \#5). Determine whether the following statements are true and give an explanation or a counterexample.
a If $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$ on an interval, then f is increasing at a decreasing rate.
b If $f^{\prime}(c)>0$ and $f^{\prime \prime}(c)=0$, then f has a local maximum at c.
c Two functions that differ by a constant increase and decrease on the same intervals.
d If f and g increase on an interval, then the product $f g$ also increases on that interval.
e There exists a function f that is continuous $(-\infty, \infty)$ with exactly three critical points, all of which correspond to local maxima.

Solution.

a True. The first derivative tells us about the rate of change of the original function. The second derivative tells us the rate of increase/decrease.
b False. Consider $f(x)=x$ and $c=2$. Then $f^{\prime}(2)=1>0$ and $f^{\prime \prime}(2)=0$, but the function has no local extrema.
c True. Presumably, "differ by a constant" refers to addition of a constant, which is ultimately zero when we take the first derivative.
d False. Via the product rule, we see that $(f g)^{\prime}=f^{\prime} g+g^{\prime} f$. Since $f(x)$ and $g(x)$ are not necessarily positive numbers, it's entirely possible that $(f g)^{\prime}$ can be less than or equal to zero, so not increasing.
e False. Suppose there did exist some function $f(x)$ and x-values $a<b<c$ such that $f^{\prime}(a)=f^{\prime}(b)=f^{\prime}(c)=0$ and further suppose that $f(b)$ is a local maximum. Then we have for all $x \in(a, b)$ that $f^{\prime}(x)>0$. If a were also a local maximum, then for all $x \in(a, b)$, we have that $f^{\prime}(x)<0$, which contradicts a necessary requirement for $f(b)$ to be a local maximum.

Example ($\S 4.2, \# 6)$. Sketch the graph of a function that is continuous on $(-\infty, \infty)$ and satisfies the following set of conditions:

$$
\begin{aligned}
f^{\prime \prime}(x)>0 \quad \text { on }(-\infty,-2) ; \\
f^{\prime \prime}(-2)=0 ; \\
f^{\prime}(-1)=f^{\prime}(1)=0 ; \\
f^{\prime \prime}(2)=0 ; \\
f^{\prime}(3)=0 ; \\
f^{\prime \prime}(x)>0 ; \quad \text { on }(4, \infty) ;
\end{aligned}
$$

Solution.

Assignment

MAT270 Recitation Notebook
§4.1, Problems 1,2
§4.2, Problems 1,2,4

